A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, fol...A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.展开更多
Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-sc...Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.展开更多
The up-conversion luminescence composite NaYF4:Er3+/TiO2 is prepared using the sol-gel method. The specimen has good crystallinity and two shapes, i.e., viereck and round, while the sizes of viereck and round partic...The up-conversion luminescence composite NaYF4:Er3+/TiO2 is prepared using the sol-gel method. The specimen has good crystallinity and two shapes, i.e., viereck and round, while the sizes of viereck and round particles are both micron-sized. The TiO2 has an anatase structure, while the NaYF4 has a hexagonal phase, which can be hardly obtained through the common sol-gel method. Due to the big particle size and the high crystallinity of pure NaYF4: Er3+, the composite has a small specific surface area that is less than Degussa P25 TiO2. The NaYF4:Er3+/TiO2 composite shows several emission peaks at 211, 237, and 251 nm under the excitation of 388 nm, at 395 nm and 411 nm under the excitation of 500 nm, and at 467, 481,492, and 508 nm under the excitation of 570 nm.展开更多
Photoelectrochemical(PEC)nanomaterials are critical to producing clean oxygenation or value-added chemical production by utilizing sustainable solar energy,but are always limited by simultaneous integration of archite...Photoelectrochemical(PEC)nanomaterials are critical to producing clean oxygenation or value-added chemical production by utilizing sustainable solar energy,but are always limited by simultaneous integration of architectural engineering and electronic regulation in one structure.Directed by density functional theory(DFT)calculations and finite element analysis(FEA),the bioinspired ivy-like Fe_(2)O_(3)heterostructures with enriched oxygen defects on TiO_(2)nanofibers are designed for boosting PEC performances.Ivy-like Fe_(2)O_(3)photo-sheets remarkably enhanced the light harvesting by multiple light-mater interactions.The oxygen vacancies on Fe_(2)O_(3)photo-sheets could aid the photons catching and promote the reactivity at active sites.More importantly,demonstrated by a well-designed dynamic observation,the abundant tip-edges within ivy-like Fe_(2)O_(3)photo-sheets enabled the surface of heterostructure with hydrophilic and aerophobic properties.The functionalized surface allowed the rapid desorption of produced bubbles and thus ensured a high density of unoccupied active sites for electrolyte accessing.Featured by these attributes,the Fe_(2)O_(3)@TiO_(2)nanofibers delivered an excellent photocurrent of 40.8 mA/mg,high donor density(1.2×10^(18)cm^(−3)),and rapid oxygen production rate(1 mmol/(L∙h)).This work demonstrates a new strategy on nano-structural design for enhancing light-harvesting and making a hydrophilic/aerophobic surface on low-dimensional oxide nanomaterial,holding great potential on designing high-performance PEC devices for producing survival source gas,carbon-neutral fuel,and valuedchemicals.展开更多
Cobalt-doped titania(Co-TiO2)nanomaterials were synthesized by the sol–gel method at different calcination temperatures.Using Escherichia coli(a),Staphylococcus aureus(b)and Candida albicans(c)as target strains,the a...Cobalt-doped titania(Co-TiO2)nanomaterials were synthesized by the sol–gel method at different calcination temperatures.Using Escherichia coli(a),Staphylococcus aureus(b)and Candida albicans(c)as target strains,the antibacterial activity in visible light of the nanomaterials were studied.Co-TiO2 nanomaterials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),UV–Vis diffuse reflectance spectroscopy(DRS),Fourier transform infrared spectrum(FT-IR)and X-ray photoelectron spectroscopy(XPS).The Co ions in the Co-TiO2 nanomaterial exist in the form of CoTiO3 phase.The antibacterial properties of Co-TiO2 nanomaterials on E.coli(a),S.aureus(b)and C.albicans(c)were investigated with the oscillating flask method and the inhibition zone method.The nanomaterials calcined at 600°C exhibit excellent antibacterial activity.The bacteriostatic rates for E.coli,S.aureus and C.albicans reached 99.5%,91.3%and 93.4%respectively.The diameters of the antibacterial rings were up to 36 mm,37 mm,30 mm respectively,and the clarity of the ring was clear.The antibacterial properties of Co-TiO2 nanomaterials were compared with those of traditional silver sol,zinc oxide sol and Zn-doped TiO2 nanomaterials The mechanism of the influences of Co ions doping on the antibacterial activity of TiO2 nanomaterials was also discussed.The doping of Co ions inhibits the particle size of the antibacterial agent and extends the photocatalytic response range,thereby improving the photocatalytic performance of the antibacterial agent.展开更多
Hexagonal NaYF4:Yb3+,Er3+ (β-NaYF4:Yb3+,Er3+) nanoparticles supported on TiO2 nanobelts were prepared using two-step pro- cedures of ion-exchangeable process and hydrothermal treatment: layered titanate nanobelts wer...Hexagonal NaYF4:Yb3+,Er3+ (β-NaYF4:Yb3+,Er3+) nanoparticles supported on TiO2 nanobelts were prepared using two-step pro- cedures of ion-exchangeable process and hydrothermal treatment: layered titanate nanobelts were first ion-exchanged with Y3+, Yb3+ and Er3+ cations to produce titanate nanobelts with these cations, and then, the product nanobelts in NaY solution were treated under hydrothermal con- dition to transform into anatase TiO2 nanobelts supported with β-NaYF4:Yb3+,Er3+ nanoparticles. The final p...展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.41373127) and Liaon- ing Provincial Natural Science Foundation of China (No.2013020121).
文摘A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.
文摘Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20876125)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20096101110013)the Northwest University Graduate Cross-Discipline Funds (Grant Nos. 09YJC27,09YJC24,and 201031)
文摘The up-conversion luminescence composite NaYF4:Er3+/TiO2 is prepared using the sol-gel method. The specimen has good crystallinity and two shapes, i.e., viereck and round, while the sizes of viereck and round particles are both micron-sized. The TiO2 has an anatase structure, while the NaYF4 has a hexagonal phase, which can be hardly obtained through the common sol-gel method. Due to the big particle size and the high crystallinity of pure NaYF4: Er3+, the composite has a small specific surface area that is less than Degussa P25 TiO2. The NaYF4:Er3+/TiO2 composite shows several emission peaks at 211, 237, and 251 nm under the excitation of 388 nm, at 395 nm and 411 nm under the excitation of 500 nm, and at 467, 481,492, and 508 nm under the excitation of 570 nm.
基金supported by the National Natural Science Foundation of China(No.21975042)the Project of Six Talents Climax Foundation of Jiangsu(No.XCL-082)+1 种基金the Innovation Platform Project Supported by Jiangsu Province(No.6907041203)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Photoelectrochemical(PEC)nanomaterials are critical to producing clean oxygenation or value-added chemical production by utilizing sustainable solar energy,but are always limited by simultaneous integration of architectural engineering and electronic regulation in one structure.Directed by density functional theory(DFT)calculations and finite element analysis(FEA),the bioinspired ivy-like Fe_(2)O_(3)heterostructures with enriched oxygen defects on TiO_(2)nanofibers are designed for boosting PEC performances.Ivy-like Fe_(2)O_(3)photo-sheets remarkably enhanced the light harvesting by multiple light-mater interactions.The oxygen vacancies on Fe_(2)O_(3)photo-sheets could aid the photons catching and promote the reactivity at active sites.More importantly,demonstrated by a well-designed dynamic observation,the abundant tip-edges within ivy-like Fe_(2)O_(3)photo-sheets enabled the surface of heterostructure with hydrophilic and aerophobic properties.The functionalized surface allowed the rapid desorption of produced bubbles and thus ensured a high density of unoccupied active sites for electrolyte accessing.Featured by these attributes,the Fe_(2)O_(3)@TiO_(2)nanofibers delivered an excellent photocurrent of 40.8 mA/mg,high donor density(1.2×10^(18)cm^(−3)),and rapid oxygen production rate(1 mmol/(L∙h)).This work demonstrates a new strategy on nano-structural design for enhancing light-harvesting and making a hydrophilic/aerophobic surface on low-dimensional oxide nanomaterial,holding great potential on designing high-performance PEC devices for producing survival source gas,carbon-neutral fuel,and valuedchemicals.
基金the support from the National Natural Science Foundation of China(No.51474056)。
文摘Cobalt-doped titania(Co-TiO2)nanomaterials were synthesized by the sol–gel method at different calcination temperatures.Using Escherichia coli(a),Staphylococcus aureus(b)and Candida albicans(c)as target strains,the antibacterial activity in visible light of the nanomaterials were studied.Co-TiO2 nanomaterials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),UV–Vis diffuse reflectance spectroscopy(DRS),Fourier transform infrared spectrum(FT-IR)and X-ray photoelectron spectroscopy(XPS).The Co ions in the Co-TiO2 nanomaterial exist in the form of CoTiO3 phase.The antibacterial properties of Co-TiO2 nanomaterials on E.coli(a),S.aureus(b)and C.albicans(c)were investigated with the oscillating flask method and the inhibition zone method.The nanomaterials calcined at 600°C exhibit excellent antibacterial activity.The bacteriostatic rates for E.coli,S.aureus and C.albicans reached 99.5%,91.3%and 93.4%respectively.The diameters of the antibacterial rings were up to 36 mm,37 mm,30 mm respectively,and the clarity of the ring was clear.The antibacterial properties of Co-TiO2 nanomaterials were compared with those of traditional silver sol,zinc oxide sol and Zn-doped TiO2 nanomaterials The mechanism of the influences of Co ions doping on the antibacterial activity of TiO2 nanomaterials was also discussed.The doping of Co ions inhibits the particle size of the antibacterial agent and extends the photocatalytic response range,thereby improving the photocatalytic performance of the antibacterial agent.
基金National Science Foundation of China(11004021,10804015)Fundamental Research Funds for the Central Universities(DC10040122,DC10020121)+1 种基金China Postdoctoral Science Foundation(2011M500623)Scientific and Technology Foundation of Dalian(2011J21DW021)
基金Project supported by the "973" Basic Research Foundation of China (2006CB932605)the National Natural Science Foundation of China (20976002)
文摘Hexagonal NaYF4:Yb3+,Er3+ (β-NaYF4:Yb3+,Er3+) nanoparticles supported on TiO2 nanobelts were prepared using two-step pro- cedures of ion-exchangeable process and hydrothermal treatment: layered titanate nanobelts were first ion-exchanged with Y3+, Yb3+ and Er3+ cations to produce titanate nanobelts with these cations, and then, the product nanobelts in NaY solution were treated under hydrothermal con- dition to transform into anatase TiO2 nanobelts supported with β-NaYF4:Yb3+,Er3+ nanoparticles. The final p...