Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-...Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-20 cm^2 is derived, the fluorescence lifetime of ^4I13/2 level is 8.5 ms. An Er^3+/Yb^3+ co-doped phosphate glass CW laser pumped by LD was demonstrated at room temperature. The maximum output power is 80 mW and slope efficiency is 16.5%.展开更多
Er3+/Yb3+co-doped phosphate are presented, laser glass materials with composition of P2O5-A12O3-Ba CO3-KNO3-Li2O-Zn O-Er2O3-Yb2O3(R-PABKLZ) are presented, in which an optimal molar ratio of 1:4 between Er3+ and ...Er3+/Yb3+co-doped phosphate are presented, laser glass materials with composition of P2O5-A12O3-Ba CO3-KNO3-Li2O-Zn O-Er2O3-Yb2O3(R-PABKLZ) are presented, in which an optimal molar ratio of 1:4 between Er3+ and Yb3+ was observed for achieving peak laser gain. Furthermore, due to adding 4.7 mol% Li1+ and 4.6 mol% Zn2+ ions into the glass, an optimum composition structure based laser material was demonstrated. On the other hand, since the high temperature melting method with changeable temperature control was used, the emission cross section of fl uorescence, excited lifetime, and an effective spectral half width reached 9.70 × 10-21 cm2, 8.20 ms, and 53.16 nm, respectively, so that a laser gain(semi× rad) of 103.05 was obtained, which is signifi cantly higher than previously reported results. The manuscript also argued the mechanism of relevant laser gain improvement.展开更多
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, th...Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.展开更多
yb^3+-Er^3+ co-doped Na20-Al2O3-SiO2-P2O5 glasses with different SiO2 content have been fabricated and characterized. Absorption and emission spectra were measured. Judd-Ofelt theory and McCumber theory are performe...yb^3+-Er^3+ co-doped Na20-Al2O3-SiO2-P2O5 glasses with different SiO2 content have been fabricated and characterized. Absorption and emission spectra were measured. Judd-Ofelt theory and McCumber theory are performed to analyze the measured absorption spectra. The Judd-Ofelt intensity parameters Ω4 and Ω6 decrease with increasing SiO2 content. The emission cross-section of Er^3+ decreases from 0.82×10^-20cm^2 to 0.76 × 10^-20cm^2 as the SiO2 content varies from 0 to 20 mol%.展开更多
文摘Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-20 cm^2 is derived, the fluorescence lifetime of ^4I13/2 level is 8.5 ms. An Er^3+/Yb^3+ co-doped phosphate glass CW laser pumped by LD was demonstrated at room temperature. The maximum output power is 80 mW and slope efficiency is 16.5%.
基金Funded by the National Natural Science Foundation of China(No.51302019)
文摘Er3+/Yb3+co-doped phosphate are presented, laser glass materials with composition of P2O5-A12O3-Ba CO3-KNO3-Li2O-Zn O-Er2O3-Yb2O3(R-PABKLZ) are presented, in which an optimal molar ratio of 1:4 between Er3+ and Yb3+ was observed for achieving peak laser gain. Furthermore, due to adding 4.7 mol% Li1+ and 4.6 mol% Zn2+ ions into the glass, an optimum composition structure based laser material was demonstrated. On the other hand, since the high temperature melting method with changeable temperature control was used, the emission cross section of fl uorescence, excited lifetime, and an effective spectral half width reached 9.70 × 10-21 cm2, 8.20 ms, and 53.16 nm, respectively, so that a laser gain(semi× rad) of 103.05 was obtained, which is signifi cantly higher than previously reported results. The manuscript also argued the mechanism of relevant laser gain improvement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61265004 and 51272097)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20125314120018)
文摘Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.
基金Funded by the International Cooperation Project of Shanghai Municipal Science and Technology Commission (No.05S207103)
文摘yb^3+-Er^3+ co-doped Na20-Al2O3-SiO2-P2O5 glasses with different SiO2 content have been fabricated and characterized. Absorption and emission spectra were measured. Judd-Ofelt theory and McCumber theory are performed to analyze the measured absorption spectra. The Judd-Ofelt intensity parameters Ω4 and Ω6 decrease with increasing SiO2 content. The emission cross-section of Er^3+ decreases from 0.82×10^-20cm^2 to 0.76 × 10^-20cm^2 as the SiO2 content varies from 0 to 20 mol%.