We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase...We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure,the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 m W, 51.3 m W,and 13.2 m W, respectively. The total single pulse output power is 69.8 m W, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.展开更多
The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from...The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.展开更多
Bidirectional EDFAs(Bi-EDFAs)featuring bidirectional signal input are theoreticallystudied.Gain and noise performances of Bi-EDFAs are analysed numerically and comparedwith that of other optical amplifiers.Application...Bidirectional EDFAs(Bi-EDFAs)featuring bidirectional signal input are theoreticallystudied.Gain and noise performances of Bi-EDFAs are analysed numerically and comparedwith that of other optical amplifiers.Applications of Bi-EDFAs in fiber networks and otherfields are considered.展开更多
In this paper, new configuration is proposed, investigated and analyzed. Fiber laser and fiber amplifier are merged in one configuration which called Erbium Doped Fiber Laser and Amplifier (EDFLA) or integrating EDFL ...In this paper, new configuration is proposed, investigated and analyzed. Fiber laser and fiber amplifier are merged in one configuration which called Erbium Doped Fiber Laser and Amplifier (EDFLA) or integrating EDFL and EDFA in one design. The configuration has three main outputs;one for laser, second for amplifier and the third it can be used for on/off output. A surprising phenomenon was remarked during the operation of this configuration. The amplification is abolished during the lasing state and appeared again if the lasing is stopped or the switch is off. The difference between outputs with the lasing and without lasing has 30 dB EDFA gain value;it is a good sign that this optical configuration can be used as an on/off integrated optical device for fiber laser.展开更多
It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for v...It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for various exposure times from an Am-241/Be-9 neutron source. The gain and noise figure of the EYDFA have been calculated theoretically and recorded after and before the irradiation to test its performance under the effect of irradiation. In order to show the enhancement in the gain of the fiber amplifier devices, a comparison between the gain of the irradiated EYDFA and Erbium doped Fiber amplifier (EDFA) has been carried out. The calculated results by the proposed model are in good agreement with the experimental ones. It indicates that the gain of EYDFA deteriorates after being irradiated by a neutron dose. Moreover, the gain of irradiated EYDFA has been reduced to 13.8 dB at a dose of 720 Gy.展开更多
A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed devic...A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.展开更多
In this paper, we evaluated comprehensively the structure and operation of open-loop interferometric optical fiber gyroscopes (IFOG). To complete the previous works, a digital approach to derive the rotation angle in ...In this paper, we evaluated comprehensively the structure and operation of open-loop interferometric optical fiber gyroscopes (IFOG). To complete the previous works, a digital approach to derive the rotation angle in optical fiber gyroscopes is investigated theoretically. Results are simulated by the MATLAB software;therefore we could compare the results in simulated area with the values derived from theory. Also, feedback Erbium-doped fiber amplifier (EFDA) FOGs, called FE-FOG, is categorized in closed-loop IFOGs. The procedure of finding the Sagnac shift for open-loop and closed-loop IFOG have been studied and compared to one another. The signal processing in the open-loop IFOG was simulated using Matlab software and for the closed-loop IFOG by PSCAD. In the open-loop IFOG the analogue formulation of the IFOG in order to extract the phase shift is analyzed. A novel and promising method for derivation of Sagnac phase shift based on digital finite impulse response filtering is proposed. Based on our simulation results, the reliability and accuracy of the method is determined. In the closed-loop IFOG, the shift was derived through frequent use of Sagnac loop. The output signal is injected in the input again as feedback. The shift phase between clockwise and counterclockwise waves in each complete route, including primary and feedback route, is identified as Sagnac shift phase.展开更多
Erbium ytterbium co-doped super-fluorescent fiber source (EYD-SFS) has been simulated by a theoret- ical model based on rate equations and power transfer equations. The output performances of four basic structures o...Erbium ytterbium co-doped super-fluorescent fiber source (EYD-SFS) has been simulated by a theoret- ical model based on rate equations and power transfer equations. The output performances of four basic structures of EYD-SFS have been expressed, and it indicated that the DPF structure is a preferable structure. The dependence of output power, mean wavelength and bandwidth stability on the pump fiber length and the concentration of Er3+ and Yb3+ have also been studied. The results indicated with a proper doping concentration of Er3+ and Yb3+ of 6.0 × 10^26 ions/m3 and 1.0 × 10^27 ions/m3, the optimal gain fiber length is 3.6 cm. In this condition, good performances of DPF structure of EYD-SFS have been achieved.展开更多
By using two sections of erbium doped fiber and a fiber optical reflector, a novel, highly efficient L-band amplifier is demonstrated with significantly power-conversion-efficiency enhancement and the gain increasing ...By using two sections of erbium doped fiber and a fiber optical reflector, a novel, highly efficient L-band amplifier is demonstrated with significantly power-conversion-efficiency enhancement and the gain increasing of as much as 13 dB.展开更多
Through the introduction of the overlapping factors between the light (pump and signal) intensities and the erbium doping distributions inside the fiber core, analytical solutions of homogeneously broadened two-level ...Through the introduction of the overlapping factors between the light (pump and signal) intensities and the erbium doping distributions inside the fiber core, analytical solutions of homogeneously broadened two-level systems for erbium-doped fiber amplifiers pumped in the 980 nm absorption band have been derived from EDFA rate equations and light propagation equations in steady-state case. By using these deduced expressions and numerical simulated methods, important features characterizing the amplifiers such as gain, pump threshold power, optimum fiber length have been analyzed and discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51905528)the Key Research Project of Bureau of Frontier Sciences and Education+1 种基金Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC008)the National Key Research and Development Project,China(Grant Nos.2019YFB2005600 and 2018YFB2003403)。
文摘We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure,the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 m W, 51.3 m W,and 13.2 m W, respectively. The total single pulse output power is 69.8 m W, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.
文摘The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.
基金a major project of the 8th Five-Year Plan of China.
文摘Bidirectional EDFAs(Bi-EDFAs)featuring bidirectional signal input are theoreticallystudied.Gain and noise performances of Bi-EDFAs are analysed numerically and comparedwith that of other optical amplifiers.Applications of Bi-EDFAs in fiber networks and otherfields are considered.
文摘In this paper, new configuration is proposed, investigated and analyzed. Fiber laser and fiber amplifier are merged in one configuration which called Erbium Doped Fiber Laser and Amplifier (EDFLA) or integrating EDFL and EDFA in one design. The configuration has three main outputs;one for laser, second for amplifier and the third it can be used for on/off output. A surprising phenomenon was remarked during the operation of this configuration. The amplification is abolished during the lasing state and appeared again if the lasing is stopped or the switch is off. The difference between outputs with the lasing and without lasing has 30 dB EDFA gain value;it is a good sign that this optical configuration can be used as an on/off integrated optical device for fiber laser.
文摘It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for various exposure times from an Am-241/Be-9 neutron source. The gain and noise figure of the EYDFA have been calculated theoretically and recorded after and before the irradiation to test its performance under the effect of irradiation. In order to show the enhancement in the gain of the fiber amplifier devices, a comparison between the gain of the irradiated EYDFA and Erbium doped Fiber amplifier (EDFA) has been carried out. The calculated results by the proposed model are in good agreement with the experimental ones. It indicates that the gain of EYDFA deteriorates after being irradiated by a neutron dose. Moreover, the gain of irradiated EYDFA has been reduced to 13.8 dB at a dose of 720 Gy.
基金The authors acknowledge the support of the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU5096/98E).
文摘A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.
文摘In this paper, we evaluated comprehensively the structure and operation of open-loop interferometric optical fiber gyroscopes (IFOG). To complete the previous works, a digital approach to derive the rotation angle in optical fiber gyroscopes is investigated theoretically. Results are simulated by the MATLAB software;therefore we could compare the results in simulated area with the values derived from theory. Also, feedback Erbium-doped fiber amplifier (EFDA) FOGs, called FE-FOG, is categorized in closed-loop IFOGs. The procedure of finding the Sagnac shift for open-loop and closed-loop IFOG have been studied and compared to one another. The signal processing in the open-loop IFOG was simulated using Matlab software and for the closed-loop IFOG by PSCAD. In the open-loop IFOG the analogue formulation of the IFOG in order to extract the phase shift is analyzed. A novel and promising method for derivation of Sagnac phase shift based on digital finite impulse response filtering is proposed. Based on our simulation results, the reliability and accuracy of the method is determined. In the closed-loop IFOG, the shift was derived through frequent use of Sagnac loop. The output signal is injected in the input again as feedback. The shift phase between clockwise and counterclockwise waves in each complete route, including primary and feedback route, is identified as Sagnac shift phase.
文摘Erbium ytterbium co-doped super-fluorescent fiber source (EYD-SFS) has been simulated by a theoret- ical model based on rate equations and power transfer equations. The output performances of four basic structures of EYD-SFS have been expressed, and it indicated that the DPF structure is a preferable structure. The dependence of output power, mean wavelength and bandwidth stability on the pump fiber length and the concentration of Er3+ and Yb3+ have also been studied. The results indicated with a proper doping concentration of Er3+ and Yb3+ of 6.0 × 10^26 ions/m3 and 1.0 × 10^27 ions/m3, the optimal gain fiber length is 3.6 cm. In this condition, good performances of DPF structure of EYD-SFS have been achieved.
文摘By using two sections of erbium doped fiber and a fiber optical reflector, a novel, highly efficient L-band amplifier is demonstrated with significantly power-conversion-efficiency enhancement and the gain increasing of as much as 13 dB.
基金Project supported by the Chinese Academy of Sciences
文摘Through the introduction of the overlapping factors between the light (pump and signal) intensities and the erbium doping distributions inside the fiber core, analytical solutions of homogeneously broadened two-level systems for erbium-doped fiber amplifiers pumped in the 980 nm absorption band have been derived from EDFA rate equations and light propagation equations in steady-state case. By using these deduced expressions and numerical simulated methods, important features characterizing the amplifiers such as gain, pump threshold power, optimum fiber length have been analyzed and discussed.