A multiwavelength tunable ring-cavity erbium-doped fiber laser(EDFL)based on a Lyot filter was presented.For the proposed Lyot filter,a comb filter consisting of an EDF-polarization-maintaining fiber(EDF-PMF),a polari...A multiwavelength tunable ring-cavity erbium-doped fiber laser(EDFL)based on a Lyot filter was presented.For the proposed Lyot filter,a comb filter consisting of an EDF-polarization-maintaining fiber(EDF-PMF),a polarization controller(PC),and a circulator with four ports was used to suppress the mode competition.The light transmission direction was guaranteed by the circulator.For the proposed fiber laser,tunable single,dual,triple,quadruple,quintuple,sextuple,and septuple wavelengths were realized.A single-wavelength laser output with an optical signal-to-noise ratio(SNR)of up to30.56 dB was realized,and a tuning range of 1590.54 nm to 1599.54 nm was achieved by tuning the PC.The stability of the single,dual,triple,and quadruple-wavelength center power fluctuations was less than 0.05 dB,0.98 dB,5.07 dB,and7.71 dB respectively.When the laser was operated in the multiwavelength condition,the SNR was more than 20.97 dB.The proposed erbium-doped fiber laser is suitable for fiber-sensing system applications.展开更多
A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber f...A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.展开更多
A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the in...A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.展开更多
We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable ...We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.展开更多
We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal a...We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.展开更多
By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm i...By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm intervals range from 1063.3 to 1065.Tnrn with the temperature change of the fiber Bragg grating. The maximum output power could reach 32 m W while the pump power increases to 120 m W. The corresponding optical-to-optical conversion efficiency is 26.7% and the slope efficiency is 33.9%, respectively. The output power fluctuation is below 2%, and its highest signal-to-noise ratio is 60 dB.展开更多
We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching e...We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96kHz to 3.26kHz, whereas the pulse width reduces from 211 #s to 86#s. The highest pulse of 479nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145mW. The repetition rate of trailing dark pulses can be increased from 27.62kHz to 50kHz as the pump power increases from 55mW to 145mW.展开更多
A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5th order h...A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5th order harmonic by increasing the pump power with an appropriate polarization controller orientation. The fundamental repetition rate of 2O kHz is obtained at the pump power of 29 m W. The highest pulse energy of 42.6 n3 is obtained at the fundamental repetition rate. The operating frequency of the dark pulse trains shifts to 2nd, 3rd, 4th and 5th harmonic as the pump powers are increased to 34mW, 50mW, 59mW and 137mW, respectively.展开更多
We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alc...We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alcohol) film. A small piece of the film is then sandwiched between two fiber ferrules and is incorporated in an EDFL cavity for generating a stable Q-switching pulse train. The EDFL operates at 1560.4nm with a pump power threshold of 11.8mW, a pulse repetition rate tunable from 22.79 to 61.43kHz, and the smallest pulse width of 7.00 μs. The Q-switching pulse shows no spectral modulation with a peak-to-pedestal ratio of 62 dB indicating the high stability of the laser. These results show that the ZnO powder has a great potential to be used for pulsed laser applications.展开更多
We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an ab...We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an abridged Hummer's method,which is combined with polyethylene oxide to produce a composite film.The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity.The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m.The laser produces the bright pulse train with repetition rate,pulse width,pulse energy and central wavelength being 13.9 MHz,0.6 ps,2.74 p J and 1577.46 nm,respectively.Then,by adding the 10 m of single mode fiber into the laser cavity,dark soliton pulse is produced.For the formation of dark pulse train,the measured repetition rate,pulse width,pulse energy and central wavelength are 8.3 MHz,20 ns and 4.98 p J and1596.82 nm,respectively.Both pulses operate in the anomalous region.展开更多
GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><sp...GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span><span style="font-family:Verdana;">phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, respectively. Us</span><span style="font-family:Verdana;">ing the saturated absorption characteristics of GeSe SA, a passively Q-switched </span><span style="font-family:Verdana;">erbium-doped fiber laser was systematically demonstrated. As the pump</span><span style="font-family:Verdana;"> power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 </span><span style="font-family:Verdana;">kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse</span><span style="font-family:Verdana;"> energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.</span></span></span></span>展开更多
We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-...We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.展开更多
We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin f...We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin film. The MoS_2 film is fabricated by depositing the MoS_2 water–ethanol mixture on a D-shape-fiber(DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm^2, and 3.4% respectively.Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS_2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics.展开更多
We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating...We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.展开更多
The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare sa...The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare saturable absorber(SA)device by depositing GO-COOH nanosheets aqueous solution on a D-shaped fiber.The modulation depth(MD)and saturable intensity of the SA are measured to be 9.6%and 19 MW/cm^(2),respectively.By inserting the SA into the erbium-doped fiber(EDF)laser,a passively mode-locked EDF laser has been achieved with the spectrum center wavelength of 1562.76 nm.The pulse duration,repetition rate,and the signal-to-noise ratio(SNR)are 500 fs,14.79 MHz,and 80 dB,respectively.The maximum average output power is measured to be 3.85 mW.These results indicate that the GO-COOH nanosheets SA can be used as a promising mode locker for the generation of ultrashort pulses.展开更多
As a preferable material in the field of photo-detection and catalysis,the characteristics of FePS3 in broad wavelength range have been proven by many experimental studies.However,FePS3 has not been used as a saturabl...As a preferable material in the field of photo-detection and catalysis,the characteristics of FePS3 in broad wavelength range have been proven by many experimental studies.However,FePS3 has not been used as a saturable absorber(SA)in fiber lasers yet.We propose and demonstrate the generation of a single wavelength and dual-wavelength based on an Er-doped fiber laser(EDFL)at 1.5μm by using an innovative FePS3 saturable absorber for the first time.The result shows that a stable passively Q-switched pulse can be generated,which demonstrates that the new two-dimensional(2D)material FePS3 served as SA provides a valid method to realize passively Q-switched laser.In addition,we achieve the output of the dual-wavelength pulse by properly rotating the polarization controller.To the best of our knowledge,the dual-wavelength pulse EDFL could be applied in biomedicine,spectroscopy,and sensing research.展开更多
We report on controllable pulse shaping in a Yb-doped stretched-pulse fiber laser followed by a high-power chirped pulse amplifier. We demonstrate that the pulses after an extra-cavity grating pair change their intens...We report on controllable pulse shaping in a Yb-doped stretched-pulse fiber laser followed by a high-power chirped pulse amplifier. We demonstrate that the pulses after an extra-cavity grating pair change their intensity profile from Lorentz to Gaussian and then to sech2 shapes by adjusting the intra-cavity polarization through a quarter-wave plate inside the fiber laser cavity. The laser pulses with different pulse shapes exhibit pulse-to-pulse amplitude fluctuation of -- 1.02%, while the sech2-shaped pulse train is provided with a more stable free-running repetition rate as a result of the stronger self-phase modulation in the fiber laser cavity than Lorentz- and Gaussian-shaped pulse trains.展开更多
We experimentally report on the generation of single and multiple dissipative soliton via nonlinear polarization rotation technique. The spectrum of the mode-locked dissipative soliton exhibits typical steep edges wit...We experimentally report on the generation of single and multiple dissipative soliton via nonlinear polarization rotation technique. The spectrum of the mode-locked dissipative soliton exhibits typical steep edges with a flat top; the pulse duration is 10.07 ps. It is found that with the pump power increasing from 110 mW to 161 mW, the top of the mode-locked spectrum becomes flater and the 3-dB spectral bandwidth is broadened, which indicates that the gain-dispersion effect is lowered under stronger pump. However, the full bandwidth of the spectrum is narrowed, which proves that the spectral filter effect increases and overcomes the effect of self-phase modulation induced spectral broadening. Such a phenomenon was not noticed nor reported before. Our experiment also demonstrates that the pulse interval is highly dependent on the input pump power: with pump power increasing, the pulse interval tends towards more uniform. So our observation qualitatively analyzes the relationship between mode-locked pulse characteristics and input pump power.展开更多
We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.Th...We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.The ZnO/PDMS composite is coated on the whole surface of the tapered fiber to guarantee the maximum efficiency of the SA device,with a measured insertion loss of 0.87 dB and a modulation depth of 6.4%.The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 mW.The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps,respectively.These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be useful as an efficient,compatible,and low-cost SA device for ultrafast laser applications.展开更多
Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside t...Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside the laser cavity. Broadband wavelength tuning range including C- and/or S-band was achieved, and tunable laser output with high slope efficiency, high side-mode suppression ratio was obtained. These fiber lasers can find vast applications in lightwave transmission, optical test instrument, fiber-optic gyros, spectroscopy, material processing, biophotonic imaging, and fiber sensor technologies.展开更多
基金Beijing Great Wall Scholars Program(Grant No.CIT&TCD20190323)Beijing Youth Talent Support Program(Grant No.Z2019042)the National Natural Science Foundation of China(Grant No.61875237).
文摘A multiwavelength tunable ring-cavity erbium-doped fiber laser(EDFL)based on a Lyot filter was presented.For the proposed Lyot filter,a comb filter consisting of an EDF-polarization-maintaining fiber(EDF-PMF),a polarization controller(PC),and a circulator with four ports was used to suppress the mode competition.The light transmission direction was guaranteed by the circulator.For the proposed fiber laser,tunable single,dual,triple,quadruple,quintuple,sextuple,and septuple wavelengths were realized.A single-wavelength laser output with an optical signal-to-noise ratio(SNR)of up to30.56 dB was realized,and a tuning range of 1590.54 nm to 1599.54 nm was achieved by tuning the PC.The stability of the single,dual,triple,and quadruple-wavelength center power fluctuations was less than 0.05 dB,0.98 dB,5.07 dB,and7.71 dB respectively.When the laser was operated in the multiwavelength condition,the SNR was more than 20.97 dB.The proposed erbium-doped fiber laser is suitable for fiber-sensing system applications.
文摘A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.
文摘A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.
基金Supported by the University of Malaya under Grant No PG100-2014B
文摘We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.
基金Supported by the International Cooperation Projects of Ministry of Science and Technology under Grant No 2012DFB10120the National Natural Science Foundation of China under Grant No 61177059
文摘By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm intervals range from 1063.3 to 1065.Tnrn with the temperature change of the fiber Bragg grating. The maximum output power could reach 32 m W while the pump power increases to 120 m W. The corresponding optical-to-optical conversion efficiency is 26.7% and the slope efficiency is 33.9%, respectively. The output power fluctuation is below 2%, and its highest signal-to-noise ratio is 60 dB.
基金Supported by the Fund from University of Malaya under Grant No RU007/2015LRGS(2015)/NGOD/UM/KPTMOSTI under Grant No SF014-2014
文摘We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96kHz to 3.26kHz, whereas the pulse width reduces from 211 #s to 86#s. The highest pulse of 479nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145mW. The repetition rate of trailing dark pulses can be increased from 27.62kHz to 50kHz as the pump power increases from 55mW to 145mW.
文摘A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5th order harmonic by increasing the pump power with an appropriate polarization controller orientation. The fundamental repetition rate of 2O kHz is obtained at the pump power of 29 m W. The highest pulse energy of 42.6 n3 is obtained at the fundamental repetition rate. The operating frequency of the dark pulse trains shifts to 2nd, 3rd, 4th and 5th harmonic as the pump powers are increased to 34mW, 50mW, 59mW and 137mW, respectively.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alcohol) film. A small piece of the film is then sandwiched between two fiber ferrules and is incorporated in an EDFL cavity for generating a stable Q-switching pulse train. The EDFL operates at 1560.4nm with a pump power threshold of 11.8mW, a pulse repetition rate tunable from 22.79 to 61.43kHz, and the smallest pulse width of 7.00 μs. The Q-switching pulse shows no spectral modulation with a peak-to-pedestal ratio of 62 dB indicating the high stability of the laser. These results show that the ZnO powder has a great potential to be used for pulsed laser applications.
文摘We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an abridged Hummer's method,which is combined with polyethylene oxide to produce a composite film.The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity.The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m.The laser produces the bright pulse train with repetition rate,pulse width,pulse energy and central wavelength being 13.9 MHz,0.6 ps,2.74 p J and 1577.46 nm,respectively.Then,by adding the 10 m of single mode fiber into the laser cavity,dark soliton pulse is produced.For the formation of dark pulse train,the measured repetition rate,pulse width,pulse energy and central wavelength are 8.3 MHz,20 ns and 4.98 p J and1596.82 nm,respectively.Both pulses operate in the anomalous region.
文摘GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span><span style="font-family:Verdana;">phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, respectively. Us</span><span style="font-family:Verdana;">ing the saturated absorption characteristics of GeSe SA, a passively Q-switched </span><span style="font-family:Verdana;">erbium-doped fiber laser was systematically demonstrated. As the pump</span><span style="font-family:Verdana;"> power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 </span><span style="font-family:Verdana;">kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse</span><span style="font-family:Verdana;"> energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.</span></span></span></span>
基金Supported by the Iraqi Ministry of Higher Education and Scientific Research and University of Baghdad
文摘We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)
文摘We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin film. The MoS_2 film is fabricated by depositing the MoS_2 water–ethanol mixture on a D-shape-fiber(DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm^2, and 3.4% respectively.Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS_2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61077017 and 61378028)the Program for New Century Excellent Talents in University,China (Grant Nos.NCET-11-0069 and NCET-10-0291)the 111 Project (Grant No.B13042)
文摘We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.
基金Project supported by the Central University Special Fund Basic Research and Operating Expenses,China(Grant No.GK201702005)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM6091)+1 种基金the National Natural Science Foundation of China(Grant No.61705183)the Fundamental Research Funds for the Central Universities,China(Grant No.2017TS011)
文摘The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare saturable absorber(SA)device by depositing GO-COOH nanosheets aqueous solution on a D-shaped fiber.The modulation depth(MD)and saturable intensity of the SA are measured to be 9.6%and 19 MW/cm^(2),respectively.By inserting the SA into the erbium-doped fiber(EDF)laser,a passively mode-locked EDF laser has been achieved with the spectrum center wavelength of 1562.76 nm.The pulse duration,repetition rate,and the signal-to-noise ratio(SNR)are 500 fs,14.79 MHz,and 80 dB,respectively.The maximum average output power is measured to be 3.85 mW.These results indicate that the GO-COOH nanosheets SA can be used as a promising mode locker for the generation of ultrashort pulses.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61875223 and 11574349)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3610)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20150365 and BK20170424)the Natural Science Foundation of Hainan Province,China(Grant No.117111)
文摘As a preferable material in the field of photo-detection and catalysis,the characteristics of FePS3 in broad wavelength range have been proven by many experimental studies.However,FePS3 has not been used as a saturable absorber(SA)in fiber lasers yet.We propose and demonstrate the generation of a single wavelength and dual-wavelength based on an Er-doped fiber laser(EDFL)at 1.5μm by using an innovative FePS3 saturable absorber for the first time.The result shows that a stable passively Q-switched pulse can be generated,which demonstrates that the new two-dimensional(2D)material FePS3 served as SA provides a valid method to realize passively Q-switched laser.In addition,we achieve the output of the dual-wavelength pulse by properly rotating the polarization controller.To the best of our knowledge,the dual-wavelength pulse EDFL could be applied in biomedicine,spectroscopy,and sensing research.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274115 and 10990101)the National Key Project for Basic Research of China(Grant No.2011CB808105)+2 种基金the National Key Scientific Instrument Project,China(Grant No.2012YQ150092)the Natural Science Foundation of Shanghai,China(Grant No.11ZR1410900)the Innovation Program of Shanghai Municipal Education Commission,China(Grant No.2014Z10269011)
文摘We report on controllable pulse shaping in a Yb-doped stretched-pulse fiber laser followed by a high-power chirped pulse amplifier. We demonstrate that the pulses after an extra-cavity grating pair change their intensity profile from Lorentz to Gaussian and then to sech2 shapes by adjusting the intra-cavity polarization through a quarter-wave plate inside the fiber laser cavity. The laser pulses with different pulse shapes exhibit pulse-to-pulse amplitude fluctuation of -- 1.02%, while the sech2-shaped pulse train is provided with a more stable free-running repetition rate as a result of the stronger self-phase modulation in the fiber laser cavity than Lorentz- and Gaussian-shaped pulse trains.
基金supported by the National Natural Science Foundation of China(Grant No.61505160)
文摘We experimentally report on the generation of single and multiple dissipative soliton via nonlinear polarization rotation technique. The spectrum of the mode-locked dissipative soliton exhibits typical steep edges with a flat top; the pulse duration is 10.07 ps. It is found that with the pump power increasing from 110 mW to 161 mW, the top of the mode-locked spectrum becomes flater and the 3-dB spectral bandwidth is broadened, which indicates that the gain-dispersion effect is lowered under stronger pump. However, the full bandwidth of the spectrum is narrowed, which proves that the spectral filter effect increases and overcomes the effect of self-phase modulation induced spectral broadening. Such a phenomenon was not noticed nor reported before. Our experiment also demonstrates that the pulse interval is highly dependent on the input pump power: with pump power increasing, the pulse interval tends towards more uniform. So our observation qualitatively analyzes the relationship between mode-locked pulse characteristics and input pump power.
基金the Ministry of Higher Education of Malaysia(MOHE)(Grant No.FRGS/1/2019/STG02/UPM/02/4).
文摘We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.The ZnO/PDMS composite is coated on the whole surface of the tapered fiber to guarantee the maximum efficiency of the SA device,with a measured insertion loss of 0.87 dB and a modulation depth of 6.4%.The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 mW.The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps,respectively.These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be useful as an efficient,compatible,and low-cost SA device for ultrafast laser applications.
文摘Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside the laser cavity. Broadband wavelength tuning range including C- and/or S-band was achieved, and tunable laser output with high slope efficiency, high side-mode suppression ratio was obtained. These fiber lasers can find vast applications in lightwave transmission, optical test instrument, fiber-optic gyros, spectroscopy, material processing, biophotonic imaging, and fiber sensor technologies.