The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake T...The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.展开更多
Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain uncl...Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region.展开更多
In this paper,the artificial lake on the campus of Tibet University was taken as the research object.By detecting the water quality of the lake,the standard index method and comprehensive pollution index method were u...In this paper,the artificial lake on the campus of Tibet University was taken as the research object.By detecting the water quality of the lake,the standard index method and comprehensive pollution index method were used to understand the water quality characteristics,pollution status,and main pollutants of the Siyuan Lake.On this basis,the comprehensive nutritional status index method was used to evaluate the eutrophication status of the Siyuan Lake.The results showed that the overall water quality of the artificial lake was good,showing as still clean,with TN and TP being the main pollution factors of the artificial lake.The main nutritional indicators were TN,TP,and transparency,with a comprehensive nutritional level of middle eutropher.Based on the environmental characteristics of the artificial lake area on the campus of Tibet University,reasonable treatment measures have been proposed.It hoped to prevent and improve the water environment through these measures,and provide reference for the protection and restoration of campus landscape water body.展开更多
Ulansuhai Lake is the important component part of irrigation and drainage system in Hetao irrigation region of Inner Mongolia.We applied the attribute recognition method in the summer water quality evaluation of Ulans...Ulansuhai Lake is the important component part of irrigation and drainage system in Hetao irrigation region of Inner Mongolia.We applied the attribute recognition method in the summer water quality evaluation of Ulansuhai Lake and divided according to the lake situation.The water quality in every area was analyzed,and the water quality situations in Ulansuhai Lake in 2006 and 2008 summer were gained.It provided the scientific basis for the effective utilization and the pollution treatment of Ulansuhai Lake.展开更多
The research analyzed social and economic development around Chao Lake as well as changes of water quality in Chao Lake and explored the relation- ships of local population and GDP with water chemical oxygen demand (...The research analyzed social and economic development around Chao Lake as well as changes of water quality in Chao Lake and explored the relation- ships of local population and GDP with water chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), chlorophyll and eutrophication index. The re- sults showed that population around Chao Lake and GDP kept growing from 2001 to 2013, and water quality was improving. In addition, correlation analysis indicated that except of water eutrophication, GDP and population showed inverse correlation with other indices, demonstrating that water quality has been effectively controlled in Chao Lake recently.展开更多
Xiayun Township watershed in the upper reaches of Hongfeng Lake is selected to study the relationship between stream grade and water quality.Turbidity and ammonium nitrogen concentration are obviously related to the s...Xiayun Township watershed in the upper reaches of Hongfeng Lake is selected to study the relationship between stream grade and water quality.Turbidity and ammonium nitrogen concentration are obviously related to the stream grade,generally speaking,are positively correlated,and the water quality is degrading from the upper reaches to the lower reaches.In the future,the influence of different land use types on the water quality should be fully analyzed on the basis of enhancing the water quality monitoring to provide supports for effectively controlling non-point source pollutions and treating the water environment of Hongfeng Lake.展开更多
Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensiona...Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensional excitation-emission matrix (3DEEM) spectra in the laboratory have been conducted. Using parallel factor analysis (PARAFAC) model, three components of colored dissolved organic matter (CDOM) have been identified successfully, based on the analysis of 3DEEM data. The characteristics of the three components also have been described by comparing them to some components of CDOM, identified in earlier researches. Meanwhile, spatial variations of concentration for the three components in Taihu Lake have been analyzed, and the result indicates that the concentration of component 1 depends more on the situation of wastewater pollution and can be used as the indicator of wastewater pollution. The relationship between the concentrations of the three components and results of the wet chemical analysis show that none of the three components can be used as indicators of gross organic matter in water. However, the concentrations of all the three components have obvious linear relationships with the BOD5 value, especially for component 1 (r = 0.72878). Finally, the potential applications of the composition analysis based on 3DEEM and PARAFAC model in water quality monitoring have been illuminated.展开更多
Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi L...Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.展开更多
Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various fact...Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various factors. It is shown that there existis an obvious spatial and temporal variation in the main factors of water quality. Annual values of TP, CON, TN, Chl-a and conductivity decrease evidently from inner Meiliang Bay to the outer from north to south. TP and TN fluctuate seasonally with much higher value in winter. This is particularly true for the mouth of Liangxi River. In addition, the Chl-1 has a synchronous variation with water temperature, although being lagged a little, and closely relates to TP and TN. Finally, the results from Principal Component Analysis show that TP, TN, SS (or SD), water temperature and Chl-a are the most influential factors to water qualuty in this area, and both suspensions and algae can contribute to transparency to Taihu Lake.展开更多
To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern...To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern part of the lake from November 2007 to December 2009. We estimated the nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) loads. Materials input and output ponds, water exchange, and applied management practices of 838.5-hm2 crab ponds were surveyed using questionnaires. Water quality of 12 ponds, which were located no more than 2 km from East Taihu Lake, were monitored. The results show that water quality in the crab ponds was better than reference data. Feeds, including corn seed, commercial feed, trash fish, and gastropod, were the major sources of N and P input in the crab ponds, contributing 88.7% and 94.9%, respectively. In total, 60.5% of N and 37.3% of P were sequestered by macrophytes, and only 15.7% and 8.5% of them were discharged as effluent. The net loads of N and P in effluent were 16.43 kg/hm2/cycle and 2.16 kg/hm2/cycle, respectively, while the COD load was -17.88 kg/hm2/cycle. This indicated that crab farming caused minor negative impact on the trophic status of the lake area, which was attenuated by macrophytes. However, wastewater purification is still necessary in crab faming.展开更多
Increasing cases of lake eutrophication globally have raised concerns among stakeholders,and particularly in China.Evaluating the causes of eutrophication in waterways is essential for effective pollution prevention a...Increasing cases of lake eutrophication globally have raised concerns among stakeholders,and particularly in China.Evaluating the causes of eutrophication in waterways is essential for effective pollution prevention and control.Xiao Xingkai Lake is part of and connected to Xingkai(Khanka)Lake,a boundary lake between China and Russia.In this study,we investigated the spatio-temporal variabilities in water quality(i.e.,dissolved oxygen(DO),total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(CODMn)and ammonium-nitrogen(NH4+-N))in Xiao Xingkai Lake,from 2012 to 2014,after which a Trophic Level Index was used to evaluate trophic status,in addition to the factors influencing water quality variation in the lake.The DO,TN,TP,CODMn and NH4+-N concentrations were 0.44-15.57,0.16-5.11,0.01-0.45,0.16-48.31,and 0.19-0.78 mg/L,respectively.Compared to the Environmental Quality Standards for surface water(GB 3838-2002)in China,the lake transitioned to an oligotrophic status in 2013 and 2014 from a mesotrophic status in 2012,TN and TP concentrations were the key factors influencing water quality of Xiao Xingkai Lake.Non-para-metric test results showed that sampling time and sites had significant effects on water quality.Water quality was worse in summer and in tourism and aquaculture areas,followed by agricultural drainage areas.Furthermore,lake water trophic status fluctuated between medium eutrophic and light eutrophic status from September 2012 to September 2014,and was negatively correlated with water level.Water quality in tourism and aquaculture sites were medium eutrophic,while in agricultural areas were light eutrophic.According to the results,high water-level fluctuations and anthropogenic activities were the key factor driving variability in physicochemical parameters associated with water quality in Xiao Xingkai Lake.展开更多
Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of ...Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of the subsidence lakes. The following indexes were discussed such as organic indexes (TOC, CODM,, BOD, COD), nutrient salts (TN, NH4^+, NO3, NO,, Kjeldahl Nitrogen, TP, PO4^3- ), etc. It is shown that water quality of the mining subsidence lake during the initial stage ( 2 years to 7 years) can stay relatively stable with a fluctuation during different quarters in a year, which can reach class Ill or IV of the Surthcc Water Environmental Quality Standard.展开更多
Water Quality Index (WQI) was applied in Dokan Lake, Kurdistan region, Iraq using ten water quality parameters (pH, Dissolved Oxygen, Turbidity, Conductivity, Hardness, Alkalinity, Sodium, Biochemical Oxygen Demand, N...Water Quality Index (WQI) was applied in Dokan Lake, Kurdistan region, Iraq using ten water quality parameters (pH, Dissolved Oxygen, Turbidity, Conductivity, Hardness, Alkalinity, Sodium, Biochemical Oxygen Demand, Nitrate and Nitrite). The relative weight assigned to each parameter ranged from 1 to 4 based on the importance of the parameter for aquatic life. The results indicated that water quality of Dokan Lake declined from Good in the years 1978, 1979, 1980, 1999, 2000 and 2008 to Poor in 2009. The impact of various anthropogenic activities was evident on some parameters such as the EC and BOD. It is suggested that monitoring of the lake is necessary for proper management. Application of the WQI is also suggested as a very helpful tool that enables the public and decision makers to evaluate water quality of lakes in Iraq.展开更多
Achieving water purity in Poyang Lake has become a major concern in recent years, thus appropriate evaluation of spatial and temporal water quality variations has become essential. Variations in 11 water quality param...Achieving water purity in Poyang Lake has become a major concern in recent years, thus appropriate evaluation of spatial and temporal water quality variations has become essential. Variations in 11 water quality parameters from 15 sampling sites in Poyang Lake were investigated from 2009 to 2012. An integrative fuzzy variable evaluation(IFVE) model based on fuzzy theory and variable weights was developed to measure variations in water quality. Results showed that: 1) only chlorophyll-a concentration and Secchi depth differed significantly among the 15 sampling sites(P < 0.01), whereas the 11 water quality parameters under investigation differed significantly throughout the seasons(P < 0.01). The annual variations of all water quality variables except for temperature, electrical conductivity, suspended solids and total phosphorus were considerable(P < 0.05). 2) The IFVE model was reasonable and flexible in evaluating water quality status and any possible ′bucket effect′. The model fully considered the influences of extremely poor indices on overall water quality. 3) A spatial analysis indicated that anthropogenic activities(particularly industrial sewage and dredging) and lake bed topography might directly affect water quality in Poyang Lake. Meanwhile, hydrological status and sewage discharged into the lake might be responsible for seasonal water quality variations.展开更多
The correlation between water quality parameters and hyper-spectral reflectance is studied with models established for each parameter and applied in Dianshan Lake, in the upstream of the Huangpu River running through ...The correlation between water quality parameters and hyper-spectral reflectance is studied with models established for each parameter and applied in Dianshan Lake, in the upstream of the Huangpu River running through Shanghai, China. Models are for dissolved oxygen (DO in mg/L): R720/R680 = 20.362×(R720/R680)2?31.438×(R720/R680)+19.156; for turbidity (NTU): R*714.5 = 206.07× (R*714.5)2?582.5×R*714.5 + 423.24; and for total phosphorus (TP in mg/L): R*509.5 = 16.661× (R*509.5)2?32.646×R*509.5+16.116. The R2 values are 0.770 8, 0.660 4 and 0.738 7, respectively, showing strong positive relationships. The models were then applied to assess water quality of different times. Results are quite satisfactory for some samples.展开更多
To investigate the evolution trend of water quality in Dongping Lake after South-North Water Transfer Project operation as well as to ensure the safe usage of the water receiving areas, water samples were collected an...To investigate the evolution trend of water quality in Dongping Lake after South-North Water Transfer Project operation as well as to ensure the safe usage of the water receiving areas, water samples were collected and determined before and after water delivery in different hydrological seasons. Then, comprehensive pollution index method, comprehensive nutrition state index method and health risk assessment model were utilized to evaluate the quality, nutrition, and health risk of Dongping Lake water. Results showed that the quality of Dongping Lake water still met level Ⅲ (light pollution) no matter before or after water delivery. The nutrition state was improved from light eutropher before water delivery to mesotropher after water delivery. The health risk level was reduced from high-medium before water delivery to medium level after water delivery. In summary, the operation of the eastern route of South-North Water Transfer Project is beneficial for water environment improvement of Dongping Lake.展开更多
Jiuzhaigou, characterized by its magnificent waterscapes and subalpine karstic features, is both a World Heritage Site and a World Biosphere Reserve in southwestern China. In recent years, this unique ecosystem has sh...Jiuzhaigou, characterized by its magnificent waterscapes and subalpine karstic features, is both a World Heritage Site and a World Biosphere Reserve in southwestern China. In recent years, this unique ecosystem has shown signs of stress due to increasing tourism activities within the reserve. The various routine methods, which monitor physical and chemical properties, do not fully reflect water quality in the subalpine and alpine lakes, while the indicators using aquatic organisms to evaluate the water quality or status of the subalpine lakes are poorly reported. Thus, in this study, benthic diatoms from multiple habitats in Jiuzhaigou were sampled and assessed for water quality monitoring. Canonical Correspondence Analysis (CCA) showed that the canonical coefficients for elevation, water temperature and total nitrogen on the first Canonical Corresnondence Analysis axis were -0.84. 0.78 and -0.53, respectively, environmental variables associated with the distribution patterns of benthic diatoms. The dominance of diatom taxa indicative of nutrient enrichment indicates a clear trend toward eutrophication in the Pearl Shoal and Colorful Lake, two of the sites mostly visited by tourists. It was observed that the effect of the type of substratum on diatom community composition is not significant in subalpine lakes. The most dominant species in Jiuzhaigou lakes are the genera Achnanthes, Fragilaria, CymbeUa, Cocconeis, Diatoma and Denticula. In combination with dominant and sensitive species in the benthic diatom communities, CCA and CA methods can be used to evaluate the impact of human activities on subalpine karstic lakes. The dominance of diatom taxa is indicative of nutrient enrichment and the results of CCA and CA indicate a clear trend toward eutrophication in the Pearl Shoal and Colorful Lake, two of the sites mostly visited by tourists.展开更多
The water pollution situation in Balihe Lake, the biggest tributary of Shaying River Basin in Anhui Province, China, has brought a huge pressure on the improvement of water quality in Huai River. On October 16th, 2017...The water pollution situation in Balihe Lake, the biggest tributary of Shaying River Basin in Anhui Province, China, has brought a huge pressure on the improvement of water quality in Huai River. On October 16th, 2017, 11 major pollution indexes were observed at 15 sampling points in Balihe Lake. Based on the data experimentally measured, the water quality in Balihe Lake was analyzed utilizing the Principal Component Analysis (PCA) of SPSS. The result suggested that the major components were oxygenated pollutants, water eutrophication pollutants and ammonia nitrogen, in which oxygenated pollutants played a dominant role. In addition, the upper part of Balihe Lake suffered serious situation and needed a focus on oxygenated pollutants.展开更多
Taudaha Lake is one of the important wetlands in Nepal, as it provides critical habitats for thousands of migratory birds and fishes. Despite being a critically important water body, there is a lack of detail chemical...Taudaha Lake is one of the important wetlands in Nepal, as it provides critical habitats for thousands of migratory birds and fishes. Despite being a critically important water body, there is a lack of detail chemical and biological studies on this lake. The present study investigates the effects of seasonal water quality variations in distribution and abundance of macroinvertebrates in Taudaha Lake, during four different seasons in 2006. The results indicate that all the water quality parameters, except secchi depth, and total alkalinity, significantly varied among seasons. The gross primary productivity of the lake also significantly varied among the seasons, with highest primary production during summer (3.92 ± 0.18 gC/m<sup>3</sup>/day) and lowest during spring (2.44 ± 0.67 gC/m<sup>3</sup>/day). A total of 2166 individual benthic macroinvertebrates from 10 families and 7 orders were collected during the study period. Unlike water quality parameters, the macroinvertebrate species composition did not vary significantly among the seasons. The results suggested that the change in lake water quality did not have significant impacts on community metrics such as species diversity, species richness, and species evenness.展开更多
文摘The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.
基金funded by the National Key Research and Development Program of China(2021YFC3201203)the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2020ZD0009)+2 种基金the National Natural Science Foundation of China(51869014)the Open Project Program of the Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau(KF2020006)the Special Funds for Innovation and Entrepreneurship of Postgraduates in Inner Mongolia University(11200-121024).
文摘Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region.
基金Supported by Innovative Projects for University Students(2022XCX020).
文摘In this paper,the artificial lake on the campus of Tibet University was taken as the research object.By detecting the water quality of the lake,the standard index method and comprehensive pollution index method were used to understand the water quality characteristics,pollution status,and main pollutants of the Siyuan Lake.On this basis,the comprehensive nutritional status index method was used to evaluate the eutrophication status of the Siyuan Lake.The results showed that the overall water quality of the artificial lake was good,showing as still clean,with TN and TP being the main pollution factors of the artificial lake.The main nutritional indicators were TN,TP,and transparency,with a comprehensive nutritional level of middle eutropher.Based on the environmental characteristics of the artificial lake area on the campus of Tibet University,reasonable treatment measures have been proposed.It hoped to prevent and improve the water environment through these measures,and provide reference for the protection and restoration of campus landscape water body.
基金Supported by National Natural Science Fund(50969005)
文摘Ulansuhai Lake is the important component part of irrigation and drainage system in Hetao irrigation region of Inner Mongolia.We applied the attribute recognition method in the summer water quality evaluation of Ulansuhai Lake and divided according to the lake situation.The water quality in every area was analyzed,and the water quality situations in Ulansuhai Lake in 2006 and 2008 summer were gained.It provided the scientific basis for the effective utilization and the pollution treatment of Ulansuhai Lake.
基金Supported by Anhui Environmental Protection Scientific Research Program(2014-004)~~
文摘The research analyzed social and economic development around Chao Lake as well as changes of water quality in Chao Lake and explored the relation- ships of local population and GDP with water chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), chlorophyll and eutrophication index. The re- sults showed that population around Chao Lake and GDP kept growing from 2001 to 2013, and water quality was improving. In addition, correlation analysis indicated that except of water eutrophication, GDP and population showed inverse correlation with other indices, demonstrating that water quality has been effectively controlled in Chao Lake recently.
文摘Xiayun Township watershed in the upper reaches of Hongfeng Lake is selected to study the relationship between stream grade and water quality.Turbidity and ammonium nitrogen concentration are obviously related to the stream grade,generally speaking,are positively correlated,and the water quality is degrading from the upper reaches to the lower reaches.In the future,the influence of different land use types on the water quality should be fully analyzed on the basis of enhancing the water quality monitoring to provide supports for effectively controlling non-point source pollutions and treating the water environment of Hongfeng Lake.
基金Project supported by the Knowledge Innovation Project of ChineseAcademy of Sciences (No. KGCX2-SW-111).
文摘Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensional excitation-emission matrix (3DEEM) spectra in the laboratory have been conducted. Using parallel factor analysis (PARAFAC) model, three components of colored dissolved organic matter (CDOM) have been identified successfully, based on the analysis of 3DEEM data. The characteristics of the three components also have been described by comparing them to some components of CDOM, identified in earlier researches. Meanwhile, spatial variations of concentration for the three components in Taihu Lake have been analyzed, and the result indicates that the concentration of component 1 depends more on the situation of wastewater pollution and can be used as the indicator of wastewater pollution. The relationship between the concentrations of the three components and results of the wet chemical analysis show that none of the three components can be used as indicators of gross organic matter in water. However, the concentrations of all the three components have obvious linear relationships with the BOD5 value, especially for component 1 (r = 0.72878). Finally, the potential applications of the composition analysis based on 3DEEM and PARAFAC model in water quality monitoring have been illuminated.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2007AA06A405, 2005AA6010100401)
文摘Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.
文摘Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various factors. It is shown that there existis an obvious spatial and temporal variation in the main factors of water quality. Annual values of TP, CON, TN, Chl-a and conductivity decrease evidently from inner Meiliang Bay to the outer from north to south. TP and TN fluctuate seasonally with much higher value in winter. This is particularly true for the mouth of Liangxi River. In addition, the Chl-1 has a synchronous variation with water temperature, although being lagged a little, and closely relates to TP and TN. Finally, the results from Principal Component Analysis show that TP, TN, SS (or SD), water temperature and Chl-a are the most influential factors to water qualuty in this area, and both suspensions and algae can contribute to transparency to Taihu Lake.
基金Supported by the Major Projects on Control and Rectification of Water Body Pollution (No. 2008ZX07101-012)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW14)+1 种基金the Aquaculture "three projects" of Jiangsu (No. J2009-12)the Agricultural Basic Research Fund of Suzhou (No. YJG0912)
文摘To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern part of the lake from November 2007 to December 2009. We estimated the nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) loads. Materials input and output ponds, water exchange, and applied management practices of 838.5-hm2 crab ponds were surveyed using questionnaires. Water quality of 12 ponds, which were located no more than 2 km from East Taihu Lake, were monitored. The results show that water quality in the crab ponds was better than reference data. Feeds, including corn seed, commercial feed, trash fish, and gastropod, were the major sources of N and P input in the crab ponds, contributing 88.7% and 94.9%, respectively. In total, 60.5% of N and 37.3% of P were sequestered by macrophytes, and only 15.7% and 8.5% of them were discharged as effluent. The net loads of N and P in effluent were 16.43 kg/hm2/cycle and 2.16 kg/hm2/cycle, respectively, while the COD load was -17.88 kg/hm2/cycle. This indicated that crab farming caused minor negative impact on the trophic status of the lake area, which was attenuated by macrophytes. However, wastewater purification is still necessary in crab faming.
基金Under the auspices of the National Natural Science Foundation of China(No.41771120,41771550)the National Basic Research Program of China(No.2012CB956100)。
文摘Increasing cases of lake eutrophication globally have raised concerns among stakeholders,and particularly in China.Evaluating the causes of eutrophication in waterways is essential for effective pollution prevention and control.Xiao Xingkai Lake is part of and connected to Xingkai(Khanka)Lake,a boundary lake between China and Russia.In this study,we investigated the spatio-temporal variabilities in water quality(i.e.,dissolved oxygen(DO),total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(CODMn)and ammonium-nitrogen(NH4+-N))in Xiao Xingkai Lake,from 2012 to 2014,after which a Trophic Level Index was used to evaluate trophic status,in addition to the factors influencing water quality variation in the lake.The DO,TN,TP,CODMn and NH4+-N concentrations were 0.44-15.57,0.16-5.11,0.01-0.45,0.16-48.31,and 0.19-0.78 mg/L,respectively.Compared to the Environmental Quality Standards for surface water(GB 3838-2002)in China,the lake transitioned to an oligotrophic status in 2013 and 2014 from a mesotrophic status in 2012,TN and TP concentrations were the key factors influencing water quality of Xiao Xingkai Lake.Non-para-metric test results showed that sampling time and sites had significant effects on water quality.Water quality was worse in summer and in tourism and aquaculture areas,followed by agricultural drainage areas.Furthermore,lake water trophic status fluctuated between medium eutrophic and light eutrophic status from September 2012 to September 2014,and was negatively correlated with water level.Water quality in tourism and aquaculture sites were medium eutrophic,while in agricultural areas were light eutrophic.According to the results,high water-level fluctuations and anthropogenic activities were the key factor driving variability in physicochemical parameters associated with water quality in Xiao Xingkai Lake.
文摘Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of the subsidence lakes. The following indexes were discussed such as organic indexes (TOC, CODM,, BOD, COD), nutrient salts (TN, NH4^+, NO3, NO,, Kjeldahl Nitrogen, TP, PO4^3- ), etc. It is shown that water quality of the mining subsidence lake during the initial stage ( 2 years to 7 years) can stay relatively stable with a fluctuation during different quarters in a year, which can reach class Ill or IV of the Surthcc Water Environmental Quality Standard.
文摘Water Quality Index (WQI) was applied in Dokan Lake, Kurdistan region, Iraq using ten water quality parameters (pH, Dissolved Oxygen, Turbidity, Conductivity, Hardness, Alkalinity, Sodium, Biochemical Oxygen Demand, Nitrate and Nitrite). The relative weight assigned to each parameter ranged from 1 to 4 based on the importance of the parameter for aquatic life. The results indicated that water quality of Dokan Lake declined from Good in the years 1978, 1979, 1980, 1999, 2000 and 2008 to Poor in 2009. The impact of various anthropogenic activities was evident on some parameters such as the EC and BOD. It is suggested that monitoring of the lake is necessary for proper management. Application of the WQI is also suggested as a very helpful tool that enables the public and decision makers to evaluate water quality of lakes in Iraq.
基金Under the auspices of National Basic Research Program of China(No.2012CB417006)National Natural Science Foundation of China(No.41271500,41571107,41601041)
文摘Achieving water purity in Poyang Lake has become a major concern in recent years, thus appropriate evaluation of spatial and temporal water quality variations has become essential. Variations in 11 water quality parameters from 15 sampling sites in Poyang Lake were investigated from 2009 to 2012. An integrative fuzzy variable evaluation(IFVE) model based on fuzzy theory and variable weights was developed to measure variations in water quality. Results showed that: 1) only chlorophyll-a concentration and Secchi depth differed significantly among the 15 sampling sites(P < 0.01), whereas the 11 water quality parameters under investigation differed significantly throughout the seasons(P < 0.01). The annual variations of all water quality variables except for temperature, electrical conductivity, suspended solids and total phosphorus were considerable(P < 0.05). 2) The IFVE model was reasonable and flexible in evaluating water quality status and any possible ′bucket effect′. The model fully considered the influences of extremely poor indices on overall water quality. 3) A spatial analysis indicated that anthropogenic activities(particularly industrial sewage and dredging) and lake bed topography might directly affect water quality in Poyang Lake. Meanwhile, hydrological status and sewage discharged into the lake might be responsible for seasonal water quality variations.
基金Supported by the National Science and Technology Infrastructure Program of China (No. 2006BAJ08B02)Students Innovation Training Program of Tongji University
文摘The correlation between water quality parameters and hyper-spectral reflectance is studied with models established for each parameter and applied in Dianshan Lake, in the upstream of the Huangpu River running through Shanghai, China. Models are for dissolved oxygen (DO in mg/L): R720/R680 = 20.362×(R720/R680)2?31.438×(R720/R680)+19.156; for turbidity (NTU): R*714.5 = 206.07× (R*714.5)2?582.5×R*714.5 + 423.24; and for total phosphorus (TP in mg/L): R*509.5 = 16.661× (R*509.5)2?32.646×R*509.5+16.116. The R2 values are 0.770 8, 0.660 4 and 0.738 7, respectively, showing strong positive relationships. The models were then applied to assess water quality of different times. Results are quite satisfactory for some samples.
基金supported by the Shandong Provincial Natural Science Foundation, China (No. ZR2017QD017)Shandong Geological Exploration Fundation (No. 2018(49))+1 种基金Key Scientific and Technological Projects of Shandong Bureau of Geology and Mineral Resources (KY201957)Shandong Bureau of Geology and Mineral Resources Exploration Fundation (KC2018010)
文摘To investigate the evolution trend of water quality in Dongping Lake after South-North Water Transfer Project operation as well as to ensure the safe usage of the water receiving areas, water samples were collected and determined before and after water delivery in different hydrological seasons. Then, comprehensive pollution index method, comprehensive nutrition state index method and health risk assessment model were utilized to evaluate the quality, nutrition, and health risk of Dongping Lake water. Results showed that the quality of Dongping Lake water still met level Ⅲ (light pollution) no matter before or after water delivery. The nutrition state was improved from light eutropher before water delivery to mesotropher after water delivery. The health risk level was reduced from high-medium before water delivery to medium level after water delivery. In summary, the operation of the eastern route of South-North Water Transfer Project is beneficial for water environment improvement of Dongping Lake.
基金funded by the Programme of Introducing Talents of Discipline to Universities(the 111 Project)(grant no.B08037)National Key Technology R&D Program of China(grant no.2012BAC06B02)
文摘Jiuzhaigou, characterized by its magnificent waterscapes and subalpine karstic features, is both a World Heritage Site and a World Biosphere Reserve in southwestern China. In recent years, this unique ecosystem has shown signs of stress due to increasing tourism activities within the reserve. The various routine methods, which monitor physical and chemical properties, do not fully reflect water quality in the subalpine and alpine lakes, while the indicators using aquatic organisms to evaluate the water quality or status of the subalpine lakes are poorly reported. Thus, in this study, benthic diatoms from multiple habitats in Jiuzhaigou were sampled and assessed for water quality monitoring. Canonical Correspondence Analysis (CCA) showed that the canonical coefficients for elevation, water temperature and total nitrogen on the first Canonical Corresnondence Analysis axis were -0.84. 0.78 and -0.53, respectively, environmental variables associated with the distribution patterns of benthic diatoms. The dominance of diatom taxa indicative of nutrient enrichment indicates a clear trend toward eutrophication in the Pearl Shoal and Colorful Lake, two of the sites mostly visited by tourists. It was observed that the effect of the type of substratum on diatom community composition is not significant in subalpine lakes. The most dominant species in Jiuzhaigou lakes are the genera Achnanthes, Fragilaria, CymbeUa, Cocconeis, Diatoma and Denticula. In combination with dominant and sensitive species in the benthic diatom communities, CCA and CA methods can be used to evaluate the impact of human activities on subalpine karstic lakes. The dominance of diatom taxa is indicative of nutrient enrichment and the results of CCA and CA indicate a clear trend toward eutrophication in the Pearl Shoal and Colorful Lake, two of the sites mostly visited by tourists.
文摘The water pollution situation in Balihe Lake, the biggest tributary of Shaying River Basin in Anhui Province, China, has brought a huge pressure on the improvement of water quality in Huai River. On October 16th, 2017, 11 major pollution indexes were observed at 15 sampling points in Balihe Lake. Based on the data experimentally measured, the water quality in Balihe Lake was analyzed utilizing the Principal Component Analysis (PCA) of SPSS. The result suggested that the major components were oxygenated pollutants, water eutrophication pollutants and ammonia nitrogen, in which oxygenated pollutants played a dominant role. In addition, the upper part of Balihe Lake suffered serious situation and needed a focus on oxygenated pollutants.
文摘Taudaha Lake is one of the important wetlands in Nepal, as it provides critical habitats for thousands of migratory birds and fishes. Despite being a critically important water body, there is a lack of detail chemical and biological studies on this lake. The present study investigates the effects of seasonal water quality variations in distribution and abundance of macroinvertebrates in Taudaha Lake, during four different seasons in 2006. The results indicate that all the water quality parameters, except secchi depth, and total alkalinity, significantly varied among seasons. The gross primary productivity of the lake also significantly varied among the seasons, with highest primary production during summer (3.92 ± 0.18 gC/m<sup>3</sup>/day) and lowest during spring (2.44 ± 0.67 gC/m<sup>3</sup>/day). A total of 2166 individual benthic macroinvertebrates from 10 families and 7 orders were collected during the study period. Unlike water quality parameters, the macroinvertebrate species composition did not vary significantly among the seasons. The results suggested that the change in lake water quality did not have significant impacts on community metrics such as species diversity, species richness, and species evenness.