In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental me...In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental method to thoroughly study the influence of eroded overlying primary key strata (PKS) in the gully terrain on DSP of shallow coal seams in this paper. The result show that when mining activities took place in the uphill section of shallow coal seams in gully terrain and the PKS were eroded, the blocks could not form stable bond-beam structures since the horizontal force of PKS blocks in adjacent sloping surfaces were relatively small. The sliding instability of blocks caused rapid increase of the load on the sub-key strata (SKS) blocks, which resulted into coal slide and roof fall as well as sharp drop of active columns. This led to DSP phenomenon. When the PKS blocks were intact, there was no DSP phenomenon to enable blocks provide certain horizontal force to maintain stable bond-beam structure. The simulation results were verified by the mining practices of working face 21306 crossing the gully terrain in the Huojitu Coal Mine.展开更多
During the Pleistocene, the western Qaidam Basin has largely experienced strong structural reconstruction and strong erosion. First, the eroded thickness of Neogene strata was restored approximately by the stratigraph...During the Pleistocene, the western Qaidam Basin has largely experienced strong structural reconstruction and strong erosion. First, the eroded thickness of Neogene strata was restored approximately by the stratigraphic profile comparison method and plane trend surface restoring method; then, accurate calculation of erosion was recovered using vitrinite reflectance, and the erosion that was restored by the trend surface restoring method was corrected; finally, a distribution map of cumulative erosion was produced. This study marks an important achievement in that one of the most important parameters of basin tectonic evolution, sedimentary evolution, and oil and gas accumulation history has been obtained, and that a basic geological problem has been solved in the Qaidam Basin. The areas with high erosion and low erosion are shown in the map and a close relation between the distribution of oil and gas fields and erosion was recognized. Large and medium oil and gas fields are mainly distributed in areas with medium and low erosion. It is difficult to form large-scale oil and gas accumulation in areas in which erosion is more than 2000 m. The mechanism of the relation between oil and gas distribution and erosion is explained. This study will be of use in predicting the distribution of oil and gas.展开更多
The nature of the solid erodent particles present in corrosive petroleum fluid can cause transporting pipeline to experience severe erosion and corrosion damages. The effect of erosion on corrosion behavior of API X12...The nature of the solid erodent particles present in corrosive petroleum fluid can cause transporting pipeline to experience severe erosion and corrosion damages. The effect of erosion on corrosion behavior of API X120 steel was investigated using aluminum oxide and silicon carbide particles with different sizes as erodent and 3.5wt.% NaCl aqueous solution saturated with carbon dioxide as a corrosive medium. The effect of the erodent particle size on the corrosion behavior of the steel material at different particle speeds and impact angles was investigated using weight loss, potentiodynamic polarization and surface analysis techniques. The erosion results confirmed that the material damage increased with increasing particle speed. It was observed that in carbon dioxide-saturated saline solution, deposition of protective iron carbonate film occurred on the steel surface. It was found that the corrosion film can provide better protection at lower particle speed than at higher speed. The ratio of total erosion-corrosion (S)/effect of erosion on corrosion (T) analysis confirmed that at higher S/T ratio, the particle speed and material removal rate are low and vice versa at lower S/T ratio. Lower S/T values for the combined erosion and corrosion tests performed with erodent silicon carbide particle compared to erodent aluminum oxide particle showed that erosion enhancement of corrosion is more evident in the test performed using aluminum oxide particle than using silicon carbide particle. The result also suggests that when subjected to larger size erodent particle, the damage to pipeline due to effect of erosion on corrosion process can be more significant compared to smaller size erodent particle.展开更多
With an area of 56×104km2, the Tarim Basin is the largest inland basin in China and is also generally acknowledged as one of the most important areas for potential oil and gas exploration. On the basis of data fr...With an area of 56×104km2, the Tarim Basin is the largest inland basin in China and is also generally acknowledged as one of the most important areas for potential oil and gas exploration. On the basis of data from 22 regional seismic profiles and 40 drilling wells, 15 important first-order and second-order regional unconformities were defined.Almost all the main unconformities are superimposed unconfomities. Since the Cambrian, 5 key periods of tectonic change have occurred during the evolution of the Tarim Basin. The total eroded stratal thickness of the above-mentioned unconformities was calculated by using the method of virtual extrapolation of seismic reflection. The results indicate that the total eroded stratal thickness of different periods is quite different in different locations of the basin. Taking the Upper-Middle Ordovician as an example, its thickness restoration of eroded strata was calculated into individual stages i.e. its thickness restoration of eroded strata was calculated to different tectonic periods. Otherwise, as for the specific period of tectonic change, the underlying strata were, respectively eroded and thus the thickness restoration of eroded strata was calculated into individual intervals. Taking the Early Hercynian period as an example, the eroded stratal thickness was calculated into individual intervals to calculate the ratio of intervals of various ages occupying the total eroded thickness. The results show that for the same stratum, its degree of erosion is quite different in different periods and at different locations, due to the varying influence of tectonic movement. The unconformities of some key periods of tectonic change have different controls on the degree of erosion and the eroded range of the individual period of the underlying strata which are the typical characteristics of multi-stage superimposition of unconformities in the Tarim Basin.展开更多
A soil conservation project was implemented in Tanzania for over 30 years.This study applied a socio-economic approach to examine and analyse the benefits of soil conservation in the Kondoa eroded area of Tanzania by ...A soil conservation project was implemented in Tanzania for over 30 years.This study applied a socio-economic approach to examine and analyse the benefits of soil conservation in the Kondoa eroded area of Tanzania by conducting a household survey of 240 households.The study findings show that 89%and 70%of respondents consider soil conservation activities have increased vegetation and soil fertility,respectively.Decreased soil erosion was perceived by 68%of respondents,increased firewood by 98%,increased fodder by 50%,high crop yields by 56%,and food sufficiency by 68%.These are the outcomes of conservation tillage,integrated farming and use of organic fertilizers,controlled stall feeding,agroforestry,construction of cut off drains,contour bunds and contour ridges cultivation,which are the main land use practices in the area.Access to extension services,household sizes,long term land ownership,crop incomes and awareness of soil conservation project were found to determine the level of participation in soil conservation.Major challenges are the lack of sustainability of those activities because of a recent policy decision to withdraw conservation investment.Despite the challenge,this study concluded that past government efforts on soil conservation activities initiated since the early 1970s through decentralization,institutional collaboration,socioeconomic support to farmers and continuous local community participation in restoring the degraded ecosystem of Kondoa have contributed to ensure environmental and socio-economic sustainability in the area.展开更多
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg...Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.展开更多
Soil erosion has resulted in removal of the topsoils containing fine soil particles and plant nutrients, causing decrease in soil fertility in the Hindu Kush, Karakoram and Himalaya(HKH) region. The existing productio...Soil erosion has resulted in removal of the topsoils containing fine soil particles and plant nutrients, causing decrease in soil fertility in the Hindu Kush, Karakoram and Himalaya(HKH) region. The existing production of cereal crop grains has been reduced to one third of the potential crop grains production owing to land degradation and poor farming practices. It is necessary to assess risk of soil loss and identify appropriate controlling measures to address issues of low agriculture productivity and water insecurity in the region. In the present study, severity of soil loss was predicted using Revised Universal Loss Equation(RUSLE) and ecological measures were identified for sustainable mountain agriculture in the HKH region of Upper Indus Basin, Pakistan. Overall 62.6% area was found to have very low risk of soil loss, i.e., <5 t/(ha·yr), 15.8% area low risk, i.e., 5-25 t/(ha·yr) and 7.5% area moderate risk, i.e., 25-50 t/(ha·yr) in the region. The risk was high, i.e., 50-100 t/(ha·yr) and very high, i.e., >100 t/(ha·yr) in about 6.8% and 7.4% areas respectively. The mean rate of soil loss was about 41.9 t/(ha·yr) in the Hindu Kush, 31.1 t/(ha·yr) in the Himalayas, 18.8 t/(ha·yr) in the Karakoram and overall 29.7 t/(ha·yr) in the three HKH ranges. As such no considerable measures have been adopted by the communities for restoration of the degraded areas except raising fruit/farm trees and supporting limited social forestry for their livelihoods. The slopes cleared for cultivation and susceptible to erosion may be stabilized through sowing/planting of multi-purpose plant species and formation of proper bench terraces. The conservation of forest ecosystem and pastures at higher elevations would help in reducing overland water flow, risk of flash flood hazard and minimizing sediment loads in the downstream. It is essential to adopt site-specific resource conservation techniques and restore possible ecosystem health for sustainable agriculture and economic development in the region in future.展开更多
This study focuses on the use of heavy fuel oil in construction material in Burkina Faso. Its mixture with silty or clayey soil is used as a coating to reinforce the walls of raw earth constructions which are very sen...This study focuses on the use of heavy fuel oil in construction material in Burkina Faso. Its mixture with silty or clayey soil is used as a coating to reinforce the walls of raw earth constructions which are very sensitive to water. The interest of this study is to determine erodibility, water content, while highlighting the influence of the porosity accessible by water on thermal diffusion in construction material containing heavy fuel oil. The heavy fuel oil was mixed with a silty-clayey soil, in different proportions, and water to make bricks samples on which tests were carried out. At the end of the experimental tests, it appears that the water content increases gradually, but not significantly with the addition of heavy fuel oil, which causes a slight increase in the speed of heat propagation through the material with reduced porosity, particularly those containing higher quantities of heavy fuel oil. Conversely, we note a good performance of heavy fuel oil in terms of water resistance properties such as porosity accessible by water and erodibility. This allows us to conclude that the mixture of heavy fuel oil and silty-clayey soil used as a coating material could greatly reduce water infiltration into the walls of housing constructions with raw earthen materials.展开更多
The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behav...The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behaviour of composites based on clay soils. For this reason, two clay soils with different physicochemical and mineralogical compositions were incorporated with diatomite at percentages ranging from 5% to 50% with a step of 5 to produce compressed earth blocks. After assessing the hydric and thermal characteristics of the composites, it was found that the incorporation of diatomite into the clay matrix favours the absorption of water by capillary action for all the composites. The diatomite-amended blocks subjected to the rain erosion test were less eroded than the unamended blocks. In addition, BYD composites were found to be more resistant than BTD composites, due to the high percentage of clay in T soil. The thermal conductivity of the latter decreases respectively from 0.72 to 0.29 W/m∙K for BTD composites and from 0.52 to 0.21 W/m∙K for BYD composites. This reduction proves the thermal insulating properties of diatomite. Despite the high capillary absorption capacity of these composites, they have good thermal properties, enabling them to be used in the construction of buildings for improved indoor thermal comfort.展开更多
基金The support from both the National Natural Science Foundation of China (No. 50974116)the Open Research Foundation from State Key Laboratory of Coal Resources and Mine Safety at China University of Mining and Technology (No. 08KF04) are gratefully acknowledged
文摘In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental method to thoroughly study the influence of eroded overlying primary key strata (PKS) in the gully terrain on DSP of shallow coal seams in this paper. The result show that when mining activities took place in the uphill section of shallow coal seams in gully terrain and the PKS were eroded, the blocks could not form stable bond-beam structures since the horizontal force of PKS blocks in adjacent sloping surfaces were relatively small. The sliding instability of blocks caused rapid increase of the load on the sub-key strata (SKS) blocks, which resulted into coal slide and roof fall as well as sharp drop of active columns. This led to DSP phenomenon. When the PKS blocks were intact, there was no DSP phenomenon to enable blocks provide certain horizontal force to maintain stable bond-beam structure. The simulation results were verified by the mining practices of working face 21306 crossing the gully terrain in the Huojitu Coal Mine.
基金co-funded by the National Science and Technology Major Project "Chinese large gas fields' formation conditions,accumulation and objective evaluation"(grant No.2016ZX05007)the Major Special Project of Chinese Petroleum Development Technologies "A study on comprehensive supporting technologies for building oil-gas field of ten million tons in Qaidam Basin"(grant No.2016E-0102)
文摘During the Pleistocene, the western Qaidam Basin has largely experienced strong structural reconstruction and strong erosion. First, the eroded thickness of Neogene strata was restored approximately by the stratigraphic profile comparison method and plane trend surface restoring method; then, accurate calculation of erosion was recovered using vitrinite reflectance, and the erosion that was restored by the trend surface restoring method was corrected; finally, a distribution map of cumulative erosion was produced. This study marks an important achievement in that one of the most important parameters of basin tectonic evolution, sedimentary evolution, and oil and gas accumulation history has been obtained, and that a basic geological problem has been solved in the Qaidam Basin. The areas with high erosion and low erosion are shown in the map and a close relation between the distribution of oil and gas fields and erosion was recognized. Large and medium oil and gas fields are mainly distributed in areas with medium and low erosion. It is difficult to form large-scale oil and gas accumulation in areas in which erosion is more than 2000 m. The mechanism of the relation between oil and gas distribution and erosion is explained. This study will be of use in predicting the distribution of oil and gas.
文摘The nature of the solid erodent particles present in corrosive petroleum fluid can cause transporting pipeline to experience severe erosion and corrosion damages. The effect of erosion on corrosion behavior of API X120 steel was investigated using aluminum oxide and silicon carbide particles with different sizes as erodent and 3.5wt.% NaCl aqueous solution saturated with carbon dioxide as a corrosive medium. The effect of the erodent particle size on the corrosion behavior of the steel material at different particle speeds and impact angles was investigated using weight loss, potentiodynamic polarization and surface analysis techniques. The erosion results confirmed that the material damage increased with increasing particle speed. It was observed that in carbon dioxide-saturated saline solution, deposition of protective iron carbonate film occurred on the steel surface. It was found that the corrosion film can provide better protection at lower particle speed than at higher speed. The ratio of total erosion-corrosion (S)/effect of erosion on corrosion (T) analysis confirmed that at higher S/T ratio, the particle speed and material removal rate are low and vice versa at lower S/T ratio. Lower S/T values for the combined erosion and corrosion tests performed with erodent silicon carbide particle compared to erodent aluminum oxide particle showed that erosion enhancement of corrosion is more evident in the test performed using aluminum oxide particle than using silicon carbide particle. The result also suggests that when subjected to larger size erodent particle, the damage to pipeline due to effect of erosion on corrosion process can be more significant compared to smaller size erodent particle.
基金funded by the Key Project of Chinese National Programs for Fundamental Research and Development (973 Program)"Hydrocarbon accumulation and distribution prediction of typical superimposed basin in China" (grant No. G1999043305)+1 种基金the Key Program of National Natural Science Foundation of China "Studies of continental margin dynamics and hydrocarbon resource potential of the South China Sea" (grant No. 40572067)"Palaeotectonic and palaeogeographic evolution and hydrocarbon accumulation in key changing period of the Paleozoic in the Tarim Basin" (grant No. 41130422)
文摘With an area of 56×104km2, the Tarim Basin is the largest inland basin in China and is also generally acknowledged as one of the most important areas for potential oil and gas exploration. On the basis of data from 22 regional seismic profiles and 40 drilling wells, 15 important first-order and second-order regional unconformities were defined.Almost all the main unconformities are superimposed unconfomities. Since the Cambrian, 5 key periods of tectonic change have occurred during the evolution of the Tarim Basin. The total eroded stratal thickness of the above-mentioned unconformities was calculated by using the method of virtual extrapolation of seismic reflection. The results indicate that the total eroded stratal thickness of different periods is quite different in different locations of the basin. Taking the Upper-Middle Ordovician as an example, its thickness restoration of eroded strata was calculated into individual stages i.e. its thickness restoration of eroded strata was calculated to different tectonic periods. Otherwise, as for the specific period of tectonic change, the underlying strata were, respectively eroded and thus the thickness restoration of eroded strata was calculated into individual intervals. Taking the Early Hercynian period as an example, the eroded stratal thickness was calculated into individual intervals to calculate the ratio of intervals of various ages occupying the total eroded thickness. The results show that for the same stratum, its degree of erosion is quite different in different periods and at different locations, due to the varying influence of tectonic movement. The unconformities of some key periods of tectonic change have different controls on the degree of erosion and the eroded range of the individual period of the underlying strata which are the typical characteristics of multi-stage superimposition of unconformities in the Tarim Basin.
基金The study was funded from the World Bank through the Ministry of Livestock Development and Fisheries of Tanzania and the Asian Institute of Technology,Thailand.We thank various organizations,the communities and individuals in the study area for their kind assistance and necessary cooperation during the study.Constructive comments and suggestions of anonymous reviewers highly improved the manuscript quality and their support is greatly appreciated.
文摘A soil conservation project was implemented in Tanzania for over 30 years.This study applied a socio-economic approach to examine and analyse the benefits of soil conservation in the Kondoa eroded area of Tanzania by conducting a household survey of 240 households.The study findings show that 89%and 70%of respondents consider soil conservation activities have increased vegetation and soil fertility,respectively.Decreased soil erosion was perceived by 68%of respondents,increased firewood by 98%,increased fodder by 50%,high crop yields by 56%,and food sufficiency by 68%.These are the outcomes of conservation tillage,integrated farming and use of organic fertilizers,controlled stall feeding,agroforestry,construction of cut off drains,contour bunds and contour ridges cultivation,which are the main land use practices in the area.Access to extension services,household sizes,long term land ownership,crop incomes and awareness of soil conservation project were found to determine the level of participation in soil conservation.Major challenges are the lack of sustainability of those activities because of a recent policy decision to withdraw conservation investment.Despite the challenge,this study concluded that past government efforts on soil conservation activities initiated since the early 1970s through decentralization,institutional collaboration,socioeconomic support to farmers and continuous local community participation in restoring the degraded ecosystem of Kondoa have contributed to ensure environmental and socio-economic sustainability in the area.
基金the financial support received from the University Grants Commission (UGC) in the form of a Junior Research Fellowship (JRF)。
文摘Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.
基金project support by Ministry of National Food Security and Research, Islamabad for this study is highly appreciated。
文摘Soil erosion has resulted in removal of the topsoils containing fine soil particles and plant nutrients, causing decrease in soil fertility in the Hindu Kush, Karakoram and Himalaya(HKH) region. The existing production of cereal crop grains has been reduced to one third of the potential crop grains production owing to land degradation and poor farming practices. It is necessary to assess risk of soil loss and identify appropriate controlling measures to address issues of low agriculture productivity and water insecurity in the region. In the present study, severity of soil loss was predicted using Revised Universal Loss Equation(RUSLE) and ecological measures were identified for sustainable mountain agriculture in the HKH region of Upper Indus Basin, Pakistan. Overall 62.6% area was found to have very low risk of soil loss, i.e., <5 t/(ha·yr), 15.8% area low risk, i.e., 5-25 t/(ha·yr) and 7.5% area moderate risk, i.e., 25-50 t/(ha·yr) in the region. The risk was high, i.e., 50-100 t/(ha·yr) and very high, i.e., >100 t/(ha·yr) in about 6.8% and 7.4% areas respectively. The mean rate of soil loss was about 41.9 t/(ha·yr) in the Hindu Kush, 31.1 t/(ha·yr) in the Himalayas, 18.8 t/(ha·yr) in the Karakoram and overall 29.7 t/(ha·yr) in the three HKH ranges. As such no considerable measures have been adopted by the communities for restoration of the degraded areas except raising fruit/farm trees and supporting limited social forestry for their livelihoods. The slopes cleared for cultivation and susceptible to erosion may be stabilized through sowing/planting of multi-purpose plant species and formation of proper bench terraces. The conservation of forest ecosystem and pastures at higher elevations would help in reducing overland water flow, risk of flash flood hazard and minimizing sediment loads in the downstream. It is essential to adopt site-specific resource conservation techniques and restore possible ecosystem health for sustainable agriculture and economic development in the region in future.
文摘This study focuses on the use of heavy fuel oil in construction material in Burkina Faso. Its mixture with silty or clayey soil is used as a coating to reinforce the walls of raw earth constructions which are very sensitive to water. The interest of this study is to determine erodibility, water content, while highlighting the influence of the porosity accessible by water on thermal diffusion in construction material containing heavy fuel oil. The heavy fuel oil was mixed with a silty-clayey soil, in different proportions, and water to make bricks samples on which tests were carried out. At the end of the experimental tests, it appears that the water content increases gradually, but not significantly with the addition of heavy fuel oil, which causes a slight increase in the speed of heat propagation through the material with reduced porosity, particularly those containing higher quantities of heavy fuel oil. Conversely, we note a good performance of heavy fuel oil in terms of water resistance properties such as porosity accessible by water and erodibility. This allows us to conclude that the mixture of heavy fuel oil and silty-clayey soil used as a coating material could greatly reduce water infiltration into the walls of housing constructions with raw earthen materials.
文摘The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behaviour of composites based on clay soils. For this reason, two clay soils with different physicochemical and mineralogical compositions were incorporated with diatomite at percentages ranging from 5% to 50% with a step of 5 to produce compressed earth blocks. After assessing the hydric and thermal characteristics of the composites, it was found that the incorporation of diatomite into the clay matrix favours the absorption of water by capillary action for all the composites. The diatomite-amended blocks subjected to the rain erosion test were less eroded than the unamended blocks. In addition, BYD composites were found to be more resistant than BTD composites, due to the high percentage of clay in T soil. The thermal conductivity of the latter decreases respectively from 0.72 to 0.29 W/m∙K for BTD composites and from 0.52 to 0.21 W/m∙K for BYD composites. This reduction proves the thermal insulating properties of diatomite. Despite the high capillary absorption capacity of these composites, they have good thermal properties, enabling them to be used in the construction of buildings for improved indoor thermal comfort.