The Ulan Buh Desert is one of the eight deserts in China that provides wind erosion prevention service(i.e.,the ecosystem;vegetation,production,and construction activities that promote sand fixation).It is significant...The Ulan Buh Desert is one of the eight deserts in China that provides wind erosion prevention service(i.e.,the ecosystem;vegetation,production,and construction activities that promote sand fixation).It is significant for the construction of the national ecological barrier,and the protection of the ecological security in the Yellow River and North China.In this study,we selected two representative years(2008 and 2018)and quantified wind erosion prevention service from the Ulan Buh Desert using the RWEQ model.Meanwhile,the HYSPLIT model was used to simulate the spatial flow process from the service supply area to the beneficiary area and to determine its scope.The specific dust reduction amount in the beneficiary area was then calculated.The energy and the time-space relation of wind erosion prevention service in the areas that receive benefits from Ulan Buh Desert were compared before and after implementing environmental restoration measures.The results showed that:(1)the total amount of wind erosion prevention in the Ulan Buh Desert in 2018 was 2.12×10^(10)kg,which was 5.17 times higher than that in 2008;(2)in 2018,the distribution density of the flow path of wind erosion prevention service was lower than that in 2008,and the flow paths in each year were concentrated in the beneficiary areas with the path distribution frequency of less than 10%;(3)the total dust reduction in the downwind area of the Ulan Buh Desert in 2018 was higher than that in 2008,totaling 15.54 million tons.Inner Mongolia Autonomous Region and Shanxi Province had the most significant amount of dust reduction.展开更多
Inner Mongolia is the important ecological barrier zone in northern China,which plays an important role in the prevention and control of wind in the regional ecosystem.Based on the Revised Wind Erosion Equation(RWEQ)m...Inner Mongolia is the important ecological barrier zone in northern China,which plays an important role in the prevention and control of wind in the regional ecosystem.Based on the Revised Wind Erosion Equation(RWEQ)model and the cost-recovery method,this study simulated the wind erosion prevention service(WEPS)in Inner Mongolia in 2010 and 2015,investigated the spatial pattern of material and monetary value of WEPS,and analyzed the differences among various cities and various ecosystems.The results indicated that the total WEPS of Inner Mongolia was estimated to be 73.87×10^(8) t in 2015,which was 4.61×10^(8) t less than in 2010,while the monetary value of WEPS was calculated to be 738.66×10^(8) yuan in 2015,which was 46.16×10^(8) yuan less than in 2010.Among all the leagues and cities,Xilin Gol League supported the highest WEPS,reaching 18.65×10^(8) t in 2015,while Wuhai provided the lowest.The WEPS of Hulunbeier increased the most,by 4.37×10^(8) t from 2010 to 2015.The WEPS in the grassland ecosystem was the highest among the different ecosystems,accounting for more than55%of the total WEPS in Inner Mongolia,but it was reduced by 1.05×10^(8) t during the same period.The WEPS in the forest ecosystem increased the most,reaching 0.19×10^(8) t.This study found that the implementation of projects such as returning farmland to forests and grasses and sand control effectively increased the WEPS by increasing the forest area.However,unsuitable land use increased the desertification of ecosystems which resulted in a reduction of WEPS in Inner Mongolia.展开更多
Nearly forty years after the Clean Water Act(CWA)was passed,we’ve come a long way in our understanding of the strength and fragility of our water resources and the impact that our actions or inactions can have on the...Nearly forty years after the Clean Water Act(CWA)was passed,we’ve come a long way in our understanding of the strength and fragility of our water resources and the impact that our actions or inactions can have on them.Though regulatory systems are in place and best management practices(BMPs)are plentiful,successfully managing risk in environmental compliance remains a constant concern.Fortunately,the rules to environmental compliance are simple:half of it is paperwork and the other half is maintenance.If you take an organized and balanced approach to compliance,you should be able to keep risk at bay and avoid enforcement action.However,remember that no matter how thoroughly you prepare for a construction project,you may still encounter unexpected situations requiring environmental knowledge and understanding.As you start to plan your operation,you should take the time to stop and consider the risk associated with your project.The Environmental Protection Agency(EPA)considers risk to be“the chance of harmful effects to human health or to ecological systems resulting from exposure to the environmental stressor.”The“stressors”are a variety of physical,chemical,or biological activities that can cause negative reactions to ecosystems and the environment.1 In order to limit,and hopefully prevent,risky situations,the key is to assess and target the problems that could arise and then implement a system of metrics that help with prevention.展开更多
基金This research was funded by the National Key Research and De-velopment Program(Grant No.2019YFC0507600/2019YFC0507601)the National Natural Science Foundation of China(Grant No.41671080).
文摘The Ulan Buh Desert is one of the eight deserts in China that provides wind erosion prevention service(i.e.,the ecosystem;vegetation,production,and construction activities that promote sand fixation).It is significant for the construction of the national ecological barrier,and the protection of the ecological security in the Yellow River and North China.In this study,we selected two representative years(2008 and 2018)and quantified wind erosion prevention service from the Ulan Buh Desert using the RWEQ model.Meanwhile,the HYSPLIT model was used to simulate the spatial flow process from the service supply area to the beneficiary area and to determine its scope.The specific dust reduction amount in the beneficiary area was then calculated.The energy and the time-space relation of wind erosion prevention service in the areas that receive benefits from Ulan Buh Desert were compared before and after implementing environmental restoration measures.The results showed that:(1)the total amount of wind erosion prevention in the Ulan Buh Desert in 2018 was 2.12×10^(10)kg,which was 5.17 times higher than that in 2008;(2)in 2018,the distribution density of the flow path of wind erosion prevention service was lower than that in 2008,and the flow paths in each year were concentrated in the beneficiary areas with the path distribution frequency of less than 10%;(3)the total dust reduction in the downwind area of the Ulan Buh Desert in 2018 was higher than that in 2008,totaling 15.54 million tons.Inner Mongolia Autonomous Region and Shanxi Province had the most significant amount of dust reduction.
基金The Strategic Priority Research Program of Chinese Academy of Sciences(XDA20020402)The National Natural Science Foundation of China(41971272)。
文摘Inner Mongolia is the important ecological barrier zone in northern China,which plays an important role in the prevention and control of wind in the regional ecosystem.Based on the Revised Wind Erosion Equation(RWEQ)model and the cost-recovery method,this study simulated the wind erosion prevention service(WEPS)in Inner Mongolia in 2010 and 2015,investigated the spatial pattern of material and monetary value of WEPS,and analyzed the differences among various cities and various ecosystems.The results indicated that the total WEPS of Inner Mongolia was estimated to be 73.87×10^(8) t in 2015,which was 4.61×10^(8) t less than in 2010,while the monetary value of WEPS was calculated to be 738.66×10^(8) yuan in 2015,which was 46.16×10^(8) yuan less than in 2010.Among all the leagues and cities,Xilin Gol League supported the highest WEPS,reaching 18.65×10^(8) t in 2015,while Wuhai provided the lowest.The WEPS of Hulunbeier increased the most,by 4.37×10^(8) t from 2010 to 2015.The WEPS in the grassland ecosystem was the highest among the different ecosystems,accounting for more than55%of the total WEPS in Inner Mongolia,but it was reduced by 1.05×10^(8) t during the same period.The WEPS in the forest ecosystem increased the most,reaching 0.19×10^(8) t.This study found that the implementation of projects such as returning farmland to forests and grasses and sand control effectively increased the WEPS by increasing the forest area.However,unsuitable land use increased the desertification of ecosystems which resulted in a reduction of WEPS in Inner Mongolia.
文摘Nearly forty years after the Clean Water Act(CWA)was passed,we’ve come a long way in our understanding of the strength and fragility of our water resources and the impact that our actions or inactions can have on them.Though regulatory systems are in place and best management practices(BMPs)are plentiful,successfully managing risk in environmental compliance remains a constant concern.Fortunately,the rules to environmental compliance are simple:half of it is paperwork and the other half is maintenance.If you take an organized and balanced approach to compliance,you should be able to keep risk at bay and avoid enforcement action.However,remember that no matter how thoroughly you prepare for a construction project,you may still encounter unexpected situations requiring environmental knowledge and understanding.As you start to plan your operation,you should take the time to stop and consider the risk associated with your project.The Environmental Protection Agency(EPA)considers risk to be“the chance of harmful effects to human health or to ecological systems resulting from exposure to the environmental stressor.”The“stressors”are a variety of physical,chemical,or biological activities that can cause negative reactions to ecosystems and the environment.1 In order to limit,and hopefully prevent,risky situations,the key is to assess and target the problems that could arise and then implement a system of metrics that help with prevention.