This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can b...Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can be problematic at low SNRs and in high interference situations, as detecting and decoding techniques may not perform correctly in such circumstances. In addition, conventional error correction algorithms have limitations in their ability to correct errors in ADS-B messages, as the bit and confidence values may be declared inaccurately in the event of low SNRs and high interference. The principal goal of this paper is to deploy a Long Short-Term Memory (LSTM) recurrent neural network model for error correction in conjunction with a conventional algorithm. The data of various flights are collected and cleaned in an initial stage. The clean data is divided randomly into training and test sets. Next, the LSTM model is trained based on the training dataset, and then the model is evaluated based on the test dataset. The proposed model not only improves the ADS-B In packet error correction rate (PECR), but it also enhances the ADS-B In terms of sensitivity. The performance evaluation results reveal that the proposed scheme is achievable and efficient for the avionics industry. It is worth noting that the proposed algorithm is not dependent on conventional algorithms’ prerequisites.展开更多
Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximat...Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximate error correction scheme that performs dimension mapping operations on surface codes.This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions.Compared to previous error correction schemes,the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities.By reducing the number of ancilla qubits required for error correction,this approach achieves savings in measurement space and reduces resource consumption costs.In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping,we employ a reinforcement learning(RL)decoder based on deep Q-learning,which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization.Compared to the minimum weight perfect matching decoding,the threshold of the RL trained model reaches 0.78%,which is 56%higher and enables large-scale fault-tolerant quantum computation.展开更多
Quantum metrology provides a fundamental limit on the precision of multi-parameter estimation,called the Heisenberg limit,which has been achieved in noiseless quantum systems.However,for systems subject to noises,it i...Quantum metrology provides a fundamental limit on the precision of multi-parameter estimation,called the Heisenberg limit,which has been achieved in noiseless quantum systems.However,for systems subject to noises,it is hard to achieve this limit since noises are inclined to destroy quantum coherence and entanglement.In this paper,a combined control scheme with feedback and quantum error correction(QEC)is proposed to achieve the Heisenberg limit in the presence of spontaneous emission,where the feedback control is used to protect a stabilizer code space containing an optimal probe state and an additional control is applied to eliminate the measurement incompatibility among three parameters.Although an ancilla system is necessary for the preparation of the optimal probe state,our scheme does not require the ancilla system to be noiseless.In addition,the control scheme in this paper has a low-dimensional code space.For the three components of a magnetic field,it can achieve the highest estimation precision with only a 2-dimensional code space,while at least a4-dimensional code space is required in the common optimal error correction protocols.展开更多
Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible w...Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.展开更多
The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(...The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(REs) has proven to be effective to monitor and avoid the occurrence of severe side reactions like Li plating to ensure the safe and fast charging. However, the intrinsic measurement errors caused by local blocking effects, which also can be referred to as potential artefacts, are seldom taken into consideration in existing studies, yet they highly dominate the correctness of conclusions inferred from REs. In this study, aiming at exploring the physical origin of the measurement errors and ensure reliable potential monitoring, electrochemical and post-mortem tests are conducted using commercial pouch cells with implanted REs. Corresponding electrochemical model which describes the blocking effects, is established to validate the abnormal absence of lithium plating that predicted by measured anode potentials under various charging rates. Theoretical derivation is further presented to explain the error sources, which can be attributed to increased local liquid potential of the RE position. Most importantly, with the guidance of error analysis, a novel parameter-independent error correction method for RE measurements is proposed for the first time, which is proven to be adequate to estimate the real anode potentials and deduce the critical C-rate of Li plating with extra safety margin. After error correction, the resulting critical C-rates are all within the range of 0.55 ± 0.03 C, which is close to the C-rate of 0.6–0.7 C obtained from experiments. In addition, this error correction method can be performed conveniently with only some simple RE measurements of polarization voltages, totally independent of battery electrochemical and geometric parameters. This study provides highly practical error correction method for RE measurements in real LIBs, substantially facilitating the fast diagnosis and safety evaluation of Li plating during charging of LIBs.展开更多
Aiming at the yaw problem caused by inertial navigation system errors accumulation during the navigation of an intelligent aircraft,a three-dimensional trajectory planning method based on the particle swarm optimizati...Aiming at the yaw problem caused by inertial navigation system errors accumulation during the navigation of an intelligent aircraft,a three-dimensional trajectory planning method based on the particle swarm optimization-A star(PSO-A*)algorithm is designed.Firstly,an environment model for aircraft error correction is established,and the trajectory is discretized to calculate the positioning error.Next,the positioning error is corrected at many preset trajectory points.The shortest trajectory and the fewest correction times are regarded as optimization goals to improve the heuristic function of A star(A*)algorithm.Finally,the index weights are continuously optimized by the particle swarm optimization algorithm.The optimal trajectory is found by the A*algorithm under the current evaluation index,so the ideal trajectory is planned.The experimental results show that the PSO-A*algorithm can quickly search for ideal trajectories in different environment models,indicating that the algorithm has certain feasibility and adaptability,and verifies the rationality of the proposed trajectory planning model.The PSO-A*algorithm has better convergence accuracy than the A*algorithm,and the search efficiency is significantly better than the grid search A star(GS-A*)algorithm.The PSO-A*algorithm proposed in this paper has certain engineering application value.The researchers will study the real-time and systematic nature of the algorithm.展开更多
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err...Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.展开更多
In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of p...In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows: adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node. When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 30%.展开更多
By using error correction model, I conduct co-integration analysis on the research of the relationship between the per capita practical consumption and per capita practical disposable income of urban residents in Huna...By using error correction model, I conduct co-integration analysis on the research of the relationship between the per capita practical consumption and per capita practical disposable income of urban residents in Hunan Province from 1978 to 2009. The results show that there is a co-integration relationship between the per capita practical consumption and the practical per capita disposable income of urban residents, and based on these, the corresponding error correction model is established. Finally, corresponding countermeasures and suggestions are put forward as follows: broaden the income channel of urban residents; create goods consuming environment; perfect socialist security system.展开更多
Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptab...Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptability of fixing techniques may vary for different types of code errors.How to choose the appropriate methods to fix different types of errors is still an unsolved problem.To this end,this paper first classifies code errors by Java novice programmers based on Delphi analysis,and compares the effectiveness of different deep learning models(CuBERT,GraphCodeBERT and GGNN)fixing different types of errors.The results indicated that the 3 models differed significantly in their classification accuracy on different error codes,while the error correction model based on the Bert structure showed better code correction potential for beginners’codes.展开更多
Error correction, in recent times, is seen as one of the important teaching processes in L2 (second language) learning, because comprehensible inputs alone is insufficient for acquisition of language. However, few L...Error correction, in recent times, is seen as one of the important teaching processes in L2 (second language) learning, because comprehensible inputs alone is insufficient for acquisition of language. However, few L2 teachers know much about error analysis and how to correct errors in the L2 classroom. Error correction is a very complicated and a thorny issue in L2 teaching and learning. L2 teachers, therefore, need to be armed with ways in which errors can be treated to ensure maximum effect yet with less harm to learners. Identifying learners' errors is very important in L2 learning, but how to correct them to give the desired effect is equally important and very challenging to L2 teachers. It is therefore crucial to initiate a study in Ghana to find out how errors are corrected in the Ghanaian English language classroom. This case study used complete observation and semi-structured interview as data collection strategies to identify error correction strategies/types English teachers use in the Ghanaian JHS (Junior High School) classroom and how error correction/treatment can be improved to facilitate English language teaching and learning. The findings of the study showed that explicit error correction technique was the most commonly used followed by recast, elicitation, metalinguistic clues, clarification request, repetition, and cues. It was also found that the causes of the disparity in the use of the various error correction types were inadequate teacher preparation, incompetence in English language, limited knowledge in error correction, caliber of students, and insufficient teaching time. This study identified that the situation can be improved through effective teacher training, in-service training, learner involvement, and effective planning.展开更多
In scaled CMOS processes, the single-event effects generate missing output pulses in Delay-Locked Loop (DLL). Due to its effective sequence detection of the missing pulses in the proposed Error Correction Circuit (ECC...In scaled CMOS processes, the single-event effects generate missing output pulses in Delay-Locked Loop (DLL). Due to its effective sequence detection of the missing pulses in the proposed Error Correction Circuit (ECC) and its portability to be applied to any DLL type, the ECC mitigates the impact of single-event effects and completes its operation with less design complexity without any concern about losing the information. The ECC has been implemented in 180 nm CMOS process and measured the accuracy of mitigation on simulations at LETs up to 100 MeV-cm<sup>2</sup>/mg. The robustness and portability of the mitigation technique are validated through the results obtained by implementing proposed ECC in XilinxArtix 7 FPGA.展开更多
Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correcti...Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correction ability and low overhead remains a significant challenge.In this paper,a low-overhead fault-tolerant error correction scheme is proposed for quantum communication systems.Firstly,syndrome ancillas are prepared into Bell states to detect errors caused by channel noise.We propose a detection approach that reduces the propagation path of quantum gate fault and reduces the circuit depth by splitting the stabilizer generator into X-type and Z-type.Additionally,a syndrome extraction circuit is equipped with two flag qubits to detect quantum gate faults,which may also introduce errors into the code block during the error detection process.Finally,analytical results are provided to demonstrate the fault-tolerant performance of the proposed FTEC scheme with the lower overhead of the ancillary qubits and circuit depth.展开更多
The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information ...The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information loss effectively using universal quantum error correction. Then a secure direct communication scheme is proposed, such that in a loss channel the information that an eavesdropper can obtain would be limited to arbitrarily small when the code is properly chosen and the correction operation is properly arranged.展开更多
The method of error correction is one of key techniques of parallel robot. A new method of end error correction of 6-HTRT parallel robot is presented for engineering and researching on correlative theory of 6-HTRT par...The method of error correction is one of key techniques of parallel robot. A new method of end error correction of 6-HTRT parallel robot is presented for engineering and researching on correlative theory of 6-HTRT parallel robot. The method need calculate many kinematics equations of parallel robot such as position back solution, velocity Jacobin, position forward solution and error Jacobin. New methods presented for solving these questions are simpler and fitter for programming and calculating, because former methods are too complex to use in engineering. These questions may be solved by iterative method of numerical value which has fast velocity of calculating. These new methods may be used in other mechanism of parallel robot too, and so have wider using value. The experimental results demonstrate that the system may satisfy entirely high technical request and fit for engineering in new measures.展开更多
[ Objective] The study aimed to correct error of lightning location data with small amplitude. [ Method] Using the curve fitting toolbox of matlab mathematical software, the distribution of lightning location data in ...[ Objective] The study aimed to correct error of lightning location data with small amplitude. [ Method] Using the curve fitting toolbox of matlab mathematical software, the distribution of lightning location data in Chongqing during 1999 -2008 was fitted based on logarithmic normal distribution function, and the specific characters of lightning data with current amplitude from -10 to 10 kA were analyzed. [ Result] During 1999 - 2008, the frequency of lightning with current amplitude from -10 to 10 kA in Chongqing City accounted for 4.93% of total frequency, while the fre- quency of lightning with current amplitude from -5 to 5 kA accounted for only 1.27%, lower than 2%, according with the conventional deletion proportion in China. Lightning data with current amplitude from -5 to 5 kA caused a great disturbance to the fitting effect, so the fitting effect was the best after these lightning data was deleted. After the lightning location system of Chongqing City was upgraded in 2005, the frequency of lightning with current amplitude from -10 to 10 kA decreased, and there were obvious changes in the frequency of lightning with current amplitude from -10 to -5 kA and from 5 to 10 kA, while the frequency of lightning with current amplitude from -5 to 5 kA was small and stable, so these data could be deleted. [Conclusion] The research could provide theoretical references for error correction of lightning location data with small amplitude in Chongqing City.展开更多
Junior high school students in rural areas constitute a particular group of English learners, for whom English writing is not only important, but also difficult. In order to find out an effective means to help them en...Junior high school students in rural areas constitute a particular group of English learners, for whom English writing is not only important, but also difficult. In order to find out an effective means to help them enhance English writing proficiency. To this end, after carefully analyzing the writing characteristics of this group of English learners, one intact class in Grade 8 of No. 14 junior middle school in Wuwei was given an experimental treatment which required them to imitate the correct examples of expressions provided by their teacher where they used to make errors. Results revealed that students in experimental class outperform their peers in control class significantly.展开更多
In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy usi...In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy using error correction technology, but at present, a lot of errorcorrection is limited to the system error modifi cation, only a small number of the instruments to an error in the dynamic error correction timely,device on the instrument precision sensors, apparently complicate the instrument structure. To fully system error correction that will affect theprecision of instrument mainly random error. Instrument is the main task of error correction is to use a certain method to compensate separableinstruments each component part of a deterministic system error, so the key problems of error correction as is the requirement of equipmentstructure stability is good, with this to ensure that the instrument error of the uncertainty, so that the fundamental fl aw. Under this basis, this paperproposes the novel countermeasure of the issues that is innovative.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
文摘Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can be problematic at low SNRs and in high interference situations, as detecting and decoding techniques may not perform correctly in such circumstances. In addition, conventional error correction algorithms have limitations in their ability to correct errors in ADS-B messages, as the bit and confidence values may be declared inaccurately in the event of low SNRs and high interference. The principal goal of this paper is to deploy a Long Short-Term Memory (LSTM) recurrent neural network model for error correction in conjunction with a conventional algorithm. The data of various flights are collected and cleaned in an initial stage. The clean data is divided randomly into training and test sets. Next, the LSTM model is trained based on the training dataset, and then the model is evaluated based on the test dataset. The proposed model not only improves the ADS-B In packet error correction rate (PECR), but it also enhances the ADS-B In terms of sensitivity. The performance evaluation results reveal that the proposed scheme is achievable and efficient for the avionics industry. It is worth noting that the proposed algorithm is not dependent on conventional algorithms’ prerequisites.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximate error correction scheme that performs dimension mapping operations on surface codes.This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions.Compared to previous error correction schemes,the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities.By reducing the number of ancilla qubits required for error correction,this approach achieves savings in measurement space and reduces resource consumption costs.In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping,we employ a reinforcement learning(RL)decoder based on deep Q-learning,which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization.Compared to the minimum weight perfect matching decoding,the threshold of the RL trained model reaches 0.78%,which is 56%higher and enables large-scale fault-tolerant quantum computation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61873251)。
文摘Quantum metrology provides a fundamental limit on the precision of multi-parameter estimation,called the Heisenberg limit,which has been achieved in noiseless quantum systems.However,for systems subject to noises,it is hard to achieve this limit since noises are inclined to destroy quantum coherence and entanglement.In this paper,a combined control scheme with feedback and quantum error correction(QEC)is proposed to achieve the Heisenberg limit in the presence of spontaneous emission,where the feedback control is used to protect a stabilizer code space containing an optimal probe state and an additional control is applied to eliminate the measurement incompatibility among three parameters.Although an ancilla system is necessary for the preparation of the optimal probe state,our scheme does not require the ancilla system to be noiseless.In addition,the control scheme in this paper has a low-dimensional code space.For the three components of a magnetic field,it can achieve the highest estimation precision with only a 2-dimensional code space,while at least a4-dimensional code space is required in the common optimal error correction protocols.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834010,11804001,and 11904160)the Natural Science Foundation of Anhui Province,China(Grant No.1808085QA11)+1 种基金the Program of Youth Sanjin Scholar,National Key R&D Program of China(Grant No.2016YFA0301402)the Fund for Shanxi"1331 Project"Key Subjects Construction.
文摘Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.
基金supported by the Ministry of Science and Technology of China(2019YFE0100200)funded by the National Natural Science Foundation of China(51807108,51877121,52037006)。
文摘The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(REs) has proven to be effective to monitor and avoid the occurrence of severe side reactions like Li plating to ensure the safe and fast charging. However, the intrinsic measurement errors caused by local blocking effects, which also can be referred to as potential artefacts, are seldom taken into consideration in existing studies, yet they highly dominate the correctness of conclusions inferred from REs. In this study, aiming at exploring the physical origin of the measurement errors and ensure reliable potential monitoring, electrochemical and post-mortem tests are conducted using commercial pouch cells with implanted REs. Corresponding electrochemical model which describes the blocking effects, is established to validate the abnormal absence of lithium plating that predicted by measured anode potentials under various charging rates. Theoretical derivation is further presented to explain the error sources, which can be attributed to increased local liquid potential of the RE position. Most importantly, with the guidance of error analysis, a novel parameter-independent error correction method for RE measurements is proposed for the first time, which is proven to be adequate to estimate the real anode potentials and deduce the critical C-rate of Li plating with extra safety margin. After error correction, the resulting critical C-rates are all within the range of 0.55 ± 0.03 C, which is close to the C-rate of 0.6–0.7 C obtained from experiments. In addition, this error correction method can be performed conveniently with only some simple RE measurements of polarization voltages, totally independent of battery electrochemical and geometric parameters. This study provides highly practical error correction method for RE measurements in real LIBs, substantially facilitating the fast diagnosis and safety evaluation of Li plating during charging of LIBs.
文摘Aiming at the yaw problem caused by inertial navigation system errors accumulation during the navigation of an intelligent aircraft,a three-dimensional trajectory planning method based on the particle swarm optimization-A star(PSO-A*)algorithm is designed.Firstly,an environment model for aircraft error correction is established,and the trajectory is discretized to calculate the positioning error.Next,the positioning error is corrected at many preset trajectory points.The shortest trajectory and the fewest correction times are regarded as optimization goals to improve the heuristic function of A star(A*)algorithm.Finally,the index weights are continuously optimized by the particle swarm optimization algorithm.The optimal trajectory is found by the A*algorithm under the current evaluation index,so the ideal trajectory is planned.The experimental results show that the PSO-A*algorithm can quickly search for ideal trajectories in different environment models,indicating that the algorithm has certain feasibility and adaptability,and verifies the rationality of the proposed trajectory planning model.The PSO-A*algorithm has better convergence accuracy than the A*algorithm,and the search efficiency is significantly better than the grid search A star(GS-A*)algorithm.The PSO-A*algorithm proposed in this paper has certain engineering application value.The researchers will study the real-time and systematic nature of the algorithm.
基金the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Project of Shandong Province Higher Educational Science and Technology Program,China(Grant No.J18KZ012).
文摘Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.
基金Projects(2003CB314802) supported by the State Key Fundamental Research and Development Programof China project(90104001) supported by the National Natural Science Foundation of China
文摘In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows: adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node. When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 30%.
基金Supported by the Scientific Research Subject of Department of Education in Hunan Province(10C0556)
文摘By using error correction model, I conduct co-integration analysis on the research of the relationship between the per capita practical consumption and per capita practical disposable income of urban residents in Hunan Province from 1978 to 2009. The results show that there is a co-integration relationship between the per capita practical consumption and the practical per capita disposable income of urban residents, and based on these, the corresponding error correction model is established. Finally, corresponding countermeasures and suggestions are put forward as follows: broaden the income channel of urban residents; create goods consuming environment; perfect socialist security system.
基金supported in part by the Education Department of Sichuan Province(Grant No.[2022]114).
文摘Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptability of fixing techniques may vary for different types of code errors.How to choose the appropriate methods to fix different types of errors is still an unsolved problem.To this end,this paper first classifies code errors by Java novice programmers based on Delphi analysis,and compares the effectiveness of different deep learning models(CuBERT,GraphCodeBERT and GGNN)fixing different types of errors.The results indicated that the 3 models differed significantly in their classification accuracy on different error codes,while the error correction model based on the Bert structure showed better code correction potential for beginners’codes.
文摘Error correction, in recent times, is seen as one of the important teaching processes in L2 (second language) learning, because comprehensible inputs alone is insufficient for acquisition of language. However, few L2 teachers know much about error analysis and how to correct errors in the L2 classroom. Error correction is a very complicated and a thorny issue in L2 teaching and learning. L2 teachers, therefore, need to be armed with ways in which errors can be treated to ensure maximum effect yet with less harm to learners. Identifying learners' errors is very important in L2 learning, but how to correct them to give the desired effect is equally important and very challenging to L2 teachers. It is therefore crucial to initiate a study in Ghana to find out how errors are corrected in the Ghanaian English language classroom. This case study used complete observation and semi-structured interview as data collection strategies to identify error correction strategies/types English teachers use in the Ghanaian JHS (Junior High School) classroom and how error correction/treatment can be improved to facilitate English language teaching and learning. The findings of the study showed that explicit error correction technique was the most commonly used followed by recast, elicitation, metalinguistic clues, clarification request, repetition, and cues. It was also found that the causes of the disparity in the use of the various error correction types were inadequate teacher preparation, incompetence in English language, limited knowledge in error correction, caliber of students, and insufficient teaching time. This study identified that the situation can be improved through effective teacher training, in-service training, learner involvement, and effective planning.
文摘In scaled CMOS processes, the single-event effects generate missing output pulses in Delay-Locked Loop (DLL). Due to its effective sequence detection of the missing pulses in the proposed Error Correction Circuit (ECC) and its portability to be applied to any DLL type, the ECC mitigates the impact of single-event effects and completes its operation with less design complexity without any concern about losing the information. The ECC has been implemented in 180 nm CMOS process and measured the accuracy of mitigation on simulations at LETs up to 100 MeV-cm<sup>2</sup>/mg. The robustness and portability of the mitigation technique are validated through the results obtained by implementing proposed ECC in XilinxArtix 7 FPGA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61671087 and 61962009)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A02)+1 种基金Huawei Technologies Co.Ltd(Grant No.YBN2020085019)the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No.2018BDKFJJ018)。
文摘Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correction ability and low overhead remains a significant challenge.In this paper,a low-overhead fault-tolerant error correction scheme is proposed for quantum communication systems.Firstly,syndrome ancillas are prepared into Bell states to detect errors caused by channel noise.We propose a detection approach that reduces the propagation path of quantum gate fault and reduces the circuit depth by splitting the stabilizer generator into X-type and Z-type.Additionally,a syndrome extraction circuit is equipped with two flag qubits to detect quantum gate faults,which may also introduce errors into the code block during the error detection process.Finally,analytical results are provided to demonstrate the fault-tolerant performance of the proposed FTEC scheme with the lower overhead of the ancillary qubits and circuit depth.
基金Project supported by the National Natural Science Foundation of China (Grant No 10504042).Acknowledgments We would like to thank Liu Wei-Tao, Wu Wei and Gao Ming for useful discussions.
文摘The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information loss effectively using universal quantum error correction. Then a secure direct communication scheme is proposed, such that in a loss channel the information that an eavesdropper can obtain would be limited to arbitrarily small when the code is properly chosen and the correction operation is properly arranged.
文摘The method of error correction is one of key techniques of parallel robot. A new method of end error correction of 6-HTRT parallel robot is presented for engineering and researching on correlative theory of 6-HTRT parallel robot. The method need calculate many kinematics equations of parallel robot such as position back solution, velocity Jacobin, position forward solution and error Jacobin. New methods presented for solving these questions are simpler and fitter for programming and calculating, because former methods are too complex to use in engineering. These questions may be solved by iterative method of numerical value which has fast velocity of calculating. These new methods may be used in other mechanism of parallel robot too, and so have wider using value. The experimental results demonstrate that the system may satisfy entirely high technical request and fit for engineering in new measures.
基金the Special Project for Public Welfare Industry(GYHY200806014)
文摘[ Objective] The study aimed to correct error of lightning location data with small amplitude. [ Method] Using the curve fitting toolbox of matlab mathematical software, the distribution of lightning location data in Chongqing during 1999 -2008 was fitted based on logarithmic normal distribution function, and the specific characters of lightning data with current amplitude from -10 to 10 kA were analyzed. [ Result] During 1999 - 2008, the frequency of lightning with current amplitude from -10 to 10 kA in Chongqing City accounted for 4.93% of total frequency, while the fre- quency of lightning with current amplitude from -5 to 5 kA accounted for only 1.27%, lower than 2%, according with the conventional deletion proportion in China. Lightning data with current amplitude from -5 to 5 kA caused a great disturbance to the fitting effect, so the fitting effect was the best after these lightning data was deleted. After the lightning location system of Chongqing City was upgraded in 2005, the frequency of lightning with current amplitude from -10 to 10 kA decreased, and there were obvious changes in the frequency of lightning with current amplitude from -10 to -5 kA and from 5 to 10 kA, while the frequency of lightning with current amplitude from -5 to 5 kA was small and stable, so these data could be deleted. [Conclusion] The research could provide theoretical references for error correction of lightning location data with small amplitude in Chongqing City.
文摘Junior high school students in rural areas constitute a particular group of English learners, for whom English writing is not only important, but also difficult. In order to find out an effective means to help them enhance English writing proficiency. To this end, after carefully analyzing the writing characteristics of this group of English learners, one intact class in Grade 8 of No. 14 junior middle school in Wuwei was given an experimental treatment which required them to imitate the correct examples of expressions provided by their teacher where they used to make errors. Results revealed that students in experimental class outperform their peers in control class significantly.
文摘In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy using error correction technology, but at present, a lot of errorcorrection is limited to the system error modifi cation, only a small number of the instruments to an error in the dynamic error correction timely,device on the instrument precision sensors, apparently complicate the instrument structure. To fully system error correction that will affect theprecision of instrument mainly random error. Instrument is the main task of error correction is to use a certain method to compensate separableinstruments each component part of a deterministic system error, so the key problems of error correction as is the requirement of equipmentstructure stability is good, with this to ensure that the instrument error of the uncertainty, so that the fundamental fl aw. Under this basis, this paperproposes the novel countermeasure of the issues that is innovative.