The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from comput...The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.展开更多
We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utiliz...We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.展开更多
Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this ...Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.展开更多
By mcans of stable attractors of discret Hopfield neural network (DHNN) , anew class of nonlinear error control codes is sugsested and some relativetheorems are presented. A kind of single error control codes is also ...By mcans of stable attractors of discret Hopfield neural network (DHNN) , anew class of nonlinear error control codes is sugsested and some relativetheorems are presented. A kind of single error control codes is also given forillustrating this new approach.展开更多
Recently,ultrasonic waves had been introduced as the transmission medium in Body Area Networks(BANs) to reduce the incalculable damage caused by radio waves. However,the communications based on ultrasonic waves suffer...Recently,ultrasonic waves had been introduced as the transmission medium in Body Area Networks(BANs) to reduce the incalculable damage caused by radio waves. However,the communications based on ultrasonic waves suffer from poor propagation of signals in air and consume too much energy. To address these limitations,firstly,we make the theoretical analysis to ensure ultrasonic waves could be used in BANs(UBANs). Then,we propose an error control strategy in UBANs to dynamically adjust the error control scheme and the Max-Retries based on the current channel state,which is called UECS. The UECS is based on IEEE 802.15.6 standards and considering the characteristics of ultrasonic waves in BANs. Simulation results show that UECS achieves better performance in terms of packet delivery ratio and energy consumption compared with the traditional strategies.展开更多
Packet loss protection method based on picture level adaptive frame /field coding (PAFF)was presented. Firstly,the end-to-end rate-distortion analysis for PAFF on the current frame was performed. Secondly,in order to ...Packet loss protection method based on picture level adaptive frame /field coding (PAFF)was presented. Firstly,the end-to-end rate-distortion analysis for PAFF on the current frame was performed. Secondly,in order to evaluate the severity of error propagation in the following frames,the error propagation intensity and human visual quality sensitivity of different areas were taken into consideration. It was followed by the quantification of relative importance. Finally,the proper coding mode was chosen utilizing an unequal comparison procedure. The simulation results show that the proposed method can improve peak signal-to-noise ratio (PSNR) up to 0. 9 dB and 1. 6 dB comparing with the field only and the dispersed flexible macro-block ordering (FMO)only methods respectively.展开更多
Error coding is suited when the transmission channel is noisy. This is the case of wireless communication. So to provide a reliable digital data transmission, we should use error detection and correction algorithms. I...Error coding is suited when the transmission channel is noisy. This is the case of wireless communication. So to provide a reliable digital data transmission, we should use error detection and correction algorithms. In this paper, we constructed a simulation study for four detection algorithms. The first three methods—hamming, LRC, and parity are common techniques in networking while the fourth is a proposed one called Signature. The results show that, the hamming code is the best one in term of detection but the worst one in term of execution time. Parity, LRC and signature have the same ability in detecting error, while the signature has a preference than all others methods in term of execution time.展开更多
Permanent Magnet Synchronous Motor (PMSM) displays chaotic phenomenon when PMSM in power on or power off. At present, there are many methods to control chaos in PMSM. However, there appears oscillation in course of co...Permanent Magnet Synchronous Motor (PMSM) displays chaotic phenomenon when PMSM in power on or power off. At present, there are many methods to control chaos in PMSM. However, there appears oscillation in course of control chaos in PMSM, which has an effect on practical application. This paper proposes error control based on adaptive backstepping to control chaos in PMSM;an error control item is added in each step virtual control design which has control effect of unknown dynamical error on system. This scheme can eliminate oscillation in course of control chaos. Finally, the simulation results show the effectiveness of theoretical analysis.展开更多
A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control sys...A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.展开更多
After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting cont...After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting control moment error is carried out respectively by means of Monte Carlo method and the distribution of impact points of rudder control rocket is counted from all the successful subsamples. In the case of adding interference errors associated with rudder angle error and starting time error, the simulation analysis of impact point dispersion is done and its lateral and longitudinal correction abilities at different targeting angles are simulated to identify the effects of these factors on characteristics and control precision of the rudder control rocket, which provides the relevant reference for high-precision design of rudder control system.展开更多
To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output err...To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.展开更多
Ocean environmental information is very important to supporting the fishermen in fishing and satellite remote sensing technology can provide it in large scale and in near real-time. Ocean fishery locations are always ...Ocean environmental information is very important to supporting the fishermen in fishing and satellite remote sensing technology can provide it in large scale and in near real-time. Ocean fishery locations are always far away beyond the coverage of the satellite data received by a land-based satellite receiving station. A nice idea is to install the satellite ground station on a fishing boat. When the boat moves to a fishery location, the station can receive the satellite data to cover the fishery areas. One satellite remote sensing system was once installed in a fishing boat and served fishing in the North Pacific fishery areas when the boat stayed there. The system can provide some oceanic environmental charts such as sea surface temperature (SST) and relevant derived products which are in most popular use in fishery industry. The accuracy of SST is the most important and affects the performance of the operational system, which is found to be dissatisfactory. Many factors affect the accuracy of SST and it is difficult to increase the accuracy by SST retrieval algorithms and clouds detection technology. A new technology of temperature error control is developed to detect the abnormity of satellite-measured SST. The performance of the technology is evaluated to change the temperature bias from -3.04 to 0.05 ℃ and the root mean square (RMS) from 5.71 to 1.75℃. It is suitable for employing in an operational satellite-measured SST system and improves the performance of the system in fishery applications. The system has been running for 3 a and proved to be very useful in fishing. It can help to locate the candidates of the fishery areas and monitor the typhoon which is very dangerous to the safety of fishing boats.展开更多
In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The fa...In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The factors that can affect the projectile burst points,namely the state parameters of the projectile on the muzzle and state parameters of the barrel muzzle,as well as the factors that affect the barrel muzzle state parameters,are analyzed.On this basis,the design principle of artillery firing accuracy is proposed.The error analysis and the corresponding inverse problem,the extraction method of key parameters affecting artillery implicated motion,the conformal and control method of rotating band are analyzed and presented.Finally,the presented method is verified through a vehicle mounted howitzer case,and the muzzle state parameter interval is obtained meeting the given firing accuracy.In addition,the sensitivity analysis of artillery parameters shows that the less the correlation between the parameters and the barrel,the less the influence on the projectile implicated motion.The analysis of the coupling effect between rifling and the rotating band shows that the uniform rifling is the optimal form for the conformal of the rotating band during firing.展开更多
A novel and efficient method to evaluate the transmission control protocol (TCP) performance over satellite links is presented. A TCP module is divided into three functional blocks, namely data processing, congestio...A novel and efficient method to evaluate the transmission control protocol (TCP) performance over satellite links is presented. A TCP module is divided into three functional blocks, namely data processing, congestion control and error control The re-established TCP module is easy to update TCP congestion control strategy or error control strategy. With the proposed analysis approach, the interactions between different congestion control and error control mechanisms, as well as the performanee of various combination protocols in satellite environments have been investigated. Simulation results obtained through a series of experiments have shown that SNACK-based error control strategy can perform well with any other congestion control strategy. The best performanee can be achieved by TCP NewReno congestion control strategy and SNACK-based error control strategy.展开更多
In the case of video streaming over wireless channels, burst errors may lead to serious video quality degradation. By jointly exploiting the scheduling mechanism on different communication layers, this paper proposes ...In the case of video streaming over wireless channels, burst errors may lead to serious video quality degradation. By jointly exploiting the scheduling mechanism on different communication layers, this paper proposes a quality-aware cross-layer scheduling scheme to achieve unequal error control for each Latency-constraint Frame Set (LFS) of a video stream. After a network-layer agent at base station firstly utilizes the network-layer packet scheduling to provide packet-granularity importance classifi-cation for the current LFS, a link-layer agent at base station further utilizes the Radio-Link-Unit (RLU) scheduling to implement finer selective retransmission of the current LFS. Under scheduling delay and bandwidth constraints, the proposed scheme can be aware of the application-layer quality and time-varying channel conditions, and hence burst errors can simply be shifted to lower-priority transmission units in the current LFS. Simulation results demonstrate that the proposed scheme has strong robustness against burst errors, and thus improves the overall received quality of the video stream over wireless channels.展开更多
Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming ...Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC(OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.展开更多
Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restru...Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restructured power system that operates under Bilateral based policy scheme. Various Integral Performance Criteria measures are taken as fitness function in PSO and are compared using overshoot, settling time and frequency and tie-line power deviation following a step load perturbation (SLP). The motivation for using different fitness technique in PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes are tested on a two-area restructured power system. The results of the proposed PSO based controller show the better performance compared to the classical Ziegler-Nichols (Z-N) tuned PI and Fuzzy Rule based PI controller.展开更多
Information networks are becoming increasingly important in practice. However, their escalating complexity is gradually impeding the efficiency of data mining. A novel network schema called the Behavior Schema of Info...Information networks are becoming increasingly important in practice. However, their escalating complexity is gradually impeding the efficiency of data mining. A novel network schema called the Behavior Schema of Information Networks (BSIN) is proposed to address this issue. This work defines the behavior of nodes as connected paths in BSIN, proposes a novel function distinguish behavior differences, and introduces approximate bisimulation into the acquisition of quotient sets for node types. The major highlight of BSIN is its ability to directly obtain a high-efficiency network on the basis of approximate bisimulation, rather than reducing the existing information network. It provides an effective representation of information networks, and the resulting novel network has a simple structure that more efficiently expresses semantic information than current network representations. The theoretical analysis of the connected paths between the original and the obtained networks demonstrates that errors are controllable;and semantic information is approximately retained. Case studies show that BSIN yields a simple network and is highly cost-effective.展开更多
The increased deployment of renewable energy in existing power networks has jeopardized rotational inertia,resulting in system degradation and insta-bility.To address the issue,this paper proposes a demand response st...The increased deployment of renewable energy in existing power networks has jeopardized rotational inertia,resulting in system degradation and insta-bility.To address the issue,this paper proposes a demand response strategy for ensuring the future reliability of the electrical power system.In addition,a modified fuzzy logic control topology-based two-degree-of-freedom(fractional order proportional integral)-tilt derivative controller is designed to regulate the frequency within a demand response framework of a hybrid two-area deregulated power system.The test system includes thermal power plants,renewable energy sources(such as wind,parabolic trough solar thermal plant,biogas),and electric vehicle assets.To adaptively tune the controller’s coefficients,a quasi-opposition-based harris hawks optimization(QOHHO)algorithm is developed.The effectiveness of this algorithm is compared to other optimization algorithms,and the stability of the system is evaluated.The results demonstrate that the designed control algorithm significantly enhances system frequency stability in various scenarios,including uncertainties,physical constraints,and high penetration of renewables,compared to existing work.Additionally,an experimental assessment through OPAL-RT is conducted to verify the practicality of the proposed strategy,considering source and load intermittencies.展开更多
A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointin...A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.展开更多
文摘The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.
基金The NNSF (10371137 and 10201034) of Chinathe Foundation (20030558008) of Doctoral Program of National Higher Education, Guangdong Provincial Natural Science Foundation (1011170) of China and the Advanced Research Foundation of Zhongshan UniversityThe US National Science Foundation (9973427 and 0312113)NSF (10371122) of China and the Chinese Academy of Sciences under the program of "Hundred Distinguished Young Chinese Scientists."
文摘We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.
文摘Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.
文摘By mcans of stable attractors of discret Hopfield neural network (DHNN) , anew class of nonlinear error control codes is sugsested and some relativetheorems are presented. A kind of single error control codes is also given forillustrating this new approach.
基金partly supported by the National Natural Science Foundation of China(Grant No.61272412)Project 2016194 Supported by Graduate Innovation Fund of Jilin UniversitySpecialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20120061110044
文摘Recently,ultrasonic waves had been introduced as the transmission medium in Body Area Networks(BANs) to reduce the incalculable damage caused by radio waves. However,the communications based on ultrasonic waves suffer from poor propagation of signals in air and consume too much energy. To address these limitations,firstly,we make the theoretical analysis to ensure ultrasonic waves could be used in BANs(UBANs). Then,we propose an error control strategy in UBANs to dynamically adjust the error control scheme and the Max-Retries based on the current channel state,which is called UECS. The UECS is based on IEEE 802.15.6 standards and considering the characteristics of ultrasonic waves in BANs. Simulation results show that UECS achieves better performance in terms of packet delivery ratio and energy consumption compared with the traditional strategies.
基金National Natural Science Foundation of China(No.40927001)the Project of Key Scientific and Technological Innovation Team of Zhejiang Province,China(No.2011R09021-06)the Fundamental Research Funds for the Central Universities,China
文摘Packet loss protection method based on picture level adaptive frame /field coding (PAFF)was presented. Firstly,the end-to-end rate-distortion analysis for PAFF on the current frame was performed. Secondly,in order to evaluate the severity of error propagation in the following frames,the error propagation intensity and human visual quality sensitivity of different areas were taken into consideration. It was followed by the quantification of relative importance. Finally,the proper coding mode was chosen utilizing an unequal comparison procedure. The simulation results show that the proposed method can improve peak signal-to-noise ratio (PSNR) up to 0. 9 dB and 1. 6 dB comparing with the field only and the dispersed flexible macro-block ordering (FMO)only methods respectively.
文摘Error coding is suited when the transmission channel is noisy. This is the case of wireless communication. So to provide a reliable digital data transmission, we should use error detection and correction algorithms. In this paper, we constructed a simulation study for four detection algorithms. The first three methods—hamming, LRC, and parity are common techniques in networking while the fourth is a proposed one called Signature. The results show that, the hamming code is the best one in term of detection but the worst one in term of execution time. Parity, LRC and signature have the same ability in detecting error, while the signature has a preference than all others methods in term of execution time.
文摘Permanent Magnet Synchronous Motor (PMSM) displays chaotic phenomenon when PMSM in power on or power off. At present, there are many methods to control chaos in PMSM. However, there appears oscillation in course of control chaos in PMSM, which has an effect on practical application. This paper proposes error control based on adaptive backstepping to control chaos in PMSM;an error control item is added in each step virtual control design which has control effect of unknown dynamical error on system. This scheme can eliminate oscillation in course of control chaos. Finally, the simulation results show the effectiveness of theoretical analysis.
文摘A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.
文摘After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting control moment error is carried out respectively by means of Monte Carlo method and the distribution of impact points of rudder control rocket is counted from all the successful subsamples. In the case of adding interference errors associated with rudder angle error and starting time error, the simulation analysis of impact point dispersion is done and its lateral and longitudinal correction abilities at different targeting angles are simulated to identify the effects of these factors on characteristics and control precision of the rudder control rocket, which provides the relevant reference for high-precision design of rudder control system.
文摘To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.
文摘Ocean environmental information is very important to supporting the fishermen in fishing and satellite remote sensing technology can provide it in large scale and in near real-time. Ocean fishery locations are always far away beyond the coverage of the satellite data received by a land-based satellite receiving station. A nice idea is to install the satellite ground station on a fishing boat. When the boat moves to a fishery location, the station can receive the satellite data to cover the fishery areas. One satellite remote sensing system was once installed in a fishing boat and served fishing in the North Pacific fishery areas when the boat stayed there. The system can provide some oceanic environmental charts such as sea surface temperature (SST) and relevant derived products which are in most popular use in fishery industry. The accuracy of SST is the most important and affects the performance of the operational system, which is found to be dissatisfactory. Many factors affect the accuracy of SST and it is difficult to increase the accuracy by SST retrieval algorithms and clouds detection technology. A new technology of temperature error control is developed to detect the abnormity of satellite-measured SST. The performance of the technology is evaluated to change the temperature bias from -3.04 to 0.05 ℃ and the root mean square (RMS) from 5.71 to 1.75℃. It is suitable for employing in an operational satellite-measured SST system and improves the performance of the system in fishery applications. The system has been running for 3 a and proved to be very useful in fishing. It can help to locate the candidates of the fishery areas and monitor the typhoon which is very dangerous to the safety of fishing boats.
基金This work was supported by the Natural Science Foundation of China(Grant No.11472137)the Fundamental Research Funds for the Central University(Grant No.309181A880 and 30919011204).
文摘In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The factors that can affect the projectile burst points,namely the state parameters of the projectile on the muzzle and state parameters of the barrel muzzle,as well as the factors that affect the barrel muzzle state parameters,are analyzed.On this basis,the design principle of artillery firing accuracy is proposed.The error analysis and the corresponding inverse problem,the extraction method of key parameters affecting artillery implicated motion,the conformal and control method of rotating band are analyzed and presented.Finally,the presented method is verified through a vehicle mounted howitzer case,and the muzzle state parameter interval is obtained meeting the given firing accuracy.In addition,the sensitivity analysis of artillery parameters shows that the less the correlation between the parameters and the barrel,the less the influence on the projectile implicated motion.The analysis of the coupling effect between rifling and the rotating band shows that the uniform rifling is the optimal form for the conformal of the rotating band during firing.
文摘A novel and efficient method to evaluate the transmission control protocol (TCP) performance over satellite links is presented. A TCP module is divided into three functional blocks, namely data processing, congestion control and error control The re-established TCP module is easy to update TCP congestion control strategy or error control strategy. With the proposed analysis approach, the interactions between different congestion control and error control mechanisms, as well as the performanee of various combination protocols in satellite environments have been investigated. Simulation results obtained through a series of experiments have shown that SNACK-based error control strategy can perform well with any other congestion control strategy. The best performanee can be achieved by TCP NewReno congestion control strategy and SNACK-based error control strategy.
文摘In the case of video streaming over wireless channels, burst errors may lead to serious video quality degradation. By jointly exploiting the scheduling mechanism on different communication layers, this paper proposes a quality-aware cross-layer scheduling scheme to achieve unequal error control for each Latency-constraint Frame Set (LFS) of a video stream. After a network-layer agent at base station firstly utilizes the network-layer packet scheduling to provide packet-granularity importance classifi-cation for the current LFS, a link-layer agent at base station further utilizes the Radio-Link-Unit (RLU) scheduling to implement finer selective retransmission of the current LFS. Under scheduling delay and bandwidth constraints, the proposed scheme can be aware of the application-layer quality and time-varying channel conditions, and hence burst errors can simply be shifted to lower-priority transmission units in the current LFS. Simulation results demonstrate that the proposed scheme has strong robustness against burst errors, and thus improves the overall received quality of the video stream over wireless channels.
基金A part of the projects titled "Development of Korea Operational Oceanographic System(KOOS),Phase 2","Construction of Ocean Research Stations and their Application Studies","Development of Environmental Information System for NSR Navigation" funded by the Ministry of Oceans and Fisheries,Korea,and "Development of fundamental technology for coastal erosion control" of KIOST
文摘Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC(OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.
文摘Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restructured power system that operates under Bilateral based policy scheme. Various Integral Performance Criteria measures are taken as fitness function in PSO and are compared using overshoot, settling time and frequency and tie-line power deviation following a step load perturbation (SLP). The motivation for using different fitness technique in PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes are tested on a two-area restructured power system. The results of the proposed PSO based controller show the better performance compared to the classical Ziegler-Nichols (Z-N) tuned PI and Fuzzy Rule based PI controller.
基金supported by the National Natural Science Foundation of China(No.12261027)the Innovation Project of Guangxi Graduate Education(No.YCBZ2021027).
文摘Information networks are becoming increasingly important in practice. However, their escalating complexity is gradually impeding the efficiency of data mining. A novel network schema called the Behavior Schema of Information Networks (BSIN) is proposed to address this issue. This work defines the behavior of nodes as connected paths in BSIN, proposes a novel function distinguish behavior differences, and introduces approximate bisimulation into the acquisition of quotient sets for node types. The major highlight of BSIN is its ability to directly obtain a high-efficiency network on the basis of approximate bisimulation, rather than reducing the existing information network. It provides an effective representation of information networks, and the resulting novel network has a simple structure that more efficiently expresses semantic information than current network representations. The theoretical analysis of the connected paths between the original and the obtained networks demonstrates that errors are controllable;and semantic information is approximately retained. Case studies show that BSIN yields a simple network and is highly cost-effective.
文摘The increased deployment of renewable energy in existing power networks has jeopardized rotational inertia,resulting in system degradation and insta-bility.To address the issue,this paper proposes a demand response strategy for ensuring the future reliability of the electrical power system.In addition,a modified fuzzy logic control topology-based two-degree-of-freedom(fractional order proportional integral)-tilt derivative controller is designed to regulate the frequency within a demand response framework of a hybrid two-area deregulated power system.The test system includes thermal power plants,renewable energy sources(such as wind,parabolic trough solar thermal plant,biogas),and electric vehicle assets.To adaptively tune the controller’s coefficients,a quasi-opposition-based harris hawks optimization(QOHHO)algorithm is developed.The effectiveness of this algorithm is compared to other optimization algorithms,and the stability of the system is evaluated.The results demonstrate that the designed control algorithm significantly enhances system frequency stability in various scenarios,including uncertainties,physical constraints,and high penetration of renewables,compared to existing work.Additionally,an experimental assessment through OPAL-RT is conducted to verify the practicality of the proposed strategy,considering source and load intermittencies.
文摘A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.