Ten isolates of Erwinia carotovora ssp. carotovora (Ecc) were isolated from infected potato tubers of Picasso, Sante, and Nevskiy varieties collected from different regions in Kyrgyzstan. Isolates were identified as E...Ten isolates of Erwinia carotovora ssp. carotovora (Ecc) were isolated from infected potato tubers of Picasso, Sante, and Nevskiy varieties collected from different regions in Kyrgyzstan. Isolates were identified as Erwinia carotovora ssp. carotovora (Ecc) by standard bacteriological techniques and pathogenicity tests on tubers and also by PCR analyses. Tests on the pathogenicity of E. carotovora ssp. carotovora (Ecc) strains to host plants by artificial inoculation have shown a high sensibility of the Picasso variety. As a result, five isolates were chosen, three isolates (EcPo1, EcPo2, and Eco3) were highly pathogenic, while two isolates (Eco4 and Eco5) were weakly pathogenic. The antagonistic bacteria, Streptomyces diastatochromogenes strain sk-6, and Streptomyces graminearuss strain sk-2, have a highly significant effect on soft rot bacteria isolates (Ecc), more than the other tested antagonistic organisms in vitro screening biotests. The Streptomyces diastatochromogenes sk-6 was selected for the control assay of storage potatoes against the most common soft rot bacterial strain in Kyrgyzstan, Erwinia carotovora sp. carotovora EcPo2. The pretreatment of potato tubers with antagonistic bacteria successfully prevented the initial infection multiplication of soft rot bacteria and reduced soft rot disease of potatoes in storage. These results justify selection of the dose 10<sup>6</sup> cells/ml of bacteria Streptomyces diastatochromogenes sk-6 for use in powdering the infected or non-infected potato tubers to suppress the development soft rot during storage. Streptomyces diastatochromogenes sk-6 as a biological disinfectant could destroy surface and internal infections, protect the tubers from the growth of phytopathogenic bacteria in the early period of their reproduction, and improve the overwintering of winter crops.展开更多
[Objective]The aim of this study was to investigate whether communication signal C6-HSL among individual bacteria can influence plant growth and disease resistance ability. [Method]With potato virus-free plantlets as ...[Objective]The aim of this study was to investigate whether communication signal C6-HSL among individual bacteria can influence plant growth and disease resistance ability. [Method]With potato virus-free plantlets as the test materials and C6-HSL as the inducer,the potato's growth and the ability of resistance against Erwinia carotovora subp carotovora were tested after being treated by C6-HSL with different concentrations. The effects of C6-HSL on plant landmark defense enzyme activities and H2O2 content in potato leaves were measured especially. [Result]C6-HSL with different concentrations could obviously inhibit the growth rate of root and the number of roots,but had no effect on plant height,number of nodes and leaf size. POD or SOD activity and H2O2 content in plant landmark defense enzymes significantly increased after induction of C6-HSL,but PAL and PPO activity had no obvious change. In the resistant test,potato plants induced by C6-HSL could inhibit the infection of Erwinia carotovora subp carotovora effectively,and its incidence was significantly lower than the control group. [Conclusion]Bacteria AHL can be possibly used as a new kind of plant disease-resistant activator.展开更多
文摘Ten isolates of Erwinia carotovora ssp. carotovora (Ecc) were isolated from infected potato tubers of Picasso, Sante, and Nevskiy varieties collected from different regions in Kyrgyzstan. Isolates were identified as Erwinia carotovora ssp. carotovora (Ecc) by standard bacteriological techniques and pathogenicity tests on tubers and also by PCR analyses. Tests on the pathogenicity of E. carotovora ssp. carotovora (Ecc) strains to host plants by artificial inoculation have shown a high sensibility of the Picasso variety. As a result, five isolates were chosen, three isolates (EcPo1, EcPo2, and Eco3) were highly pathogenic, while two isolates (Eco4 and Eco5) were weakly pathogenic. The antagonistic bacteria, Streptomyces diastatochromogenes strain sk-6, and Streptomyces graminearuss strain sk-2, have a highly significant effect on soft rot bacteria isolates (Ecc), more than the other tested antagonistic organisms in vitro screening biotests. The Streptomyces diastatochromogenes sk-6 was selected for the control assay of storage potatoes against the most common soft rot bacterial strain in Kyrgyzstan, Erwinia carotovora sp. carotovora EcPo2. The pretreatment of potato tubers with antagonistic bacteria successfully prevented the initial infection multiplication of soft rot bacteria and reduced soft rot disease of potatoes in storage. These results justify selection of the dose 10<sup>6</sup> cells/ml of bacteria Streptomyces diastatochromogenes sk-6 for use in powdering the infected or non-infected potato tubers to suppress the development soft rot during storage. Streptomyces diastatochromogenes sk-6 as a biological disinfectant could destroy surface and internal infections, protect the tubers from the growth of phytopathogenic bacteria in the early period of their reproduction, and improve the overwintering of winter crops.
基金Supported by Natural Science Foundation in Hebei Province(C200600707)~~
文摘[Objective]The aim of this study was to investigate whether communication signal C6-HSL among individual bacteria can influence plant growth and disease resistance ability. [Method]With potato virus-free plantlets as the test materials and C6-HSL as the inducer,the potato's growth and the ability of resistance against Erwinia carotovora subp carotovora were tested after being treated by C6-HSL with different concentrations. The effects of C6-HSL on plant landmark defense enzyme activities and H2O2 content in potato leaves were measured especially. [Result]C6-HSL with different concentrations could obviously inhibit the growth rate of root and the number of roots,but had no effect on plant height,number of nodes and leaf size. POD or SOD activity and H2O2 content in plant landmark defense enzymes significantly increased after induction of C6-HSL,but PAL and PPO activity had no obvious change. In the resistant test,potato plants induced by C6-HSL could inhibit the infection of Erwinia carotovora subp carotovora effectively,and its incidence was significantly lower than the control group. [Conclusion]Bacteria AHL can be possibly used as a new kind of plant disease-resistant activator.