Sweet potato is one of the first natural GMOs, genetically modified 8000 years ago by Agrobacterium rhizogenes as reported recently by Kyndt et al. A section of 10 kbp long DNA (Transferred- DNA or T-DNA) of the Ri (R...Sweet potato is one of the first natural GMOs, genetically modified 8000 years ago by Agrobacterium rhizogenes as reported recently by Kyndt et al. A section of 10 kbp long DNA (Transferred- DNA or T-DNA) of the Ri (Root-inducing) plasmid was transferred to the plant genome by A. rhizo-genes and has been maintained in all 291 hexaploid sweet potato cultivars of the world. The maintenance in the sweet potato genome and expression of two T-DNA genes for tryptophan-2-monooxygenease (iaaM) and for indole-3-acetamide hydrolase (iaaH) are likely to be physiologically significant since these enzymes convert tryptophan to indole-3-acetic acid, a major plant growth hormone auxin. Sweet potato (Ipomoea batatas (L.) Lam) is ranked the third most important root crop after potato and cassava, and the seventh in global food crop production with more than 126 million metric tons. Although sweet potato originated in Central or South America, China currently produces over 86% of world production with 109 million metric tons. In the United States, North Carolina is the leading producer with 38.5% of the 2007 sweet potato production, followed by California, Mississippi, and Louisiana with 23%, 19%, and 15.9%, respectively. Leaf curl virus diseases have been reported in sweet potato throughout the world. One of the causal agents is Sweet potato leaf curl virus (SPLCV) belonging to the genus Begomovirus (family Geminiviridae). Although SPLCV does not cause symptoms on Beauregard, one of the most predominant sweet potato cultivars in the US, it can reduce the yield up to 26%. Serological detection of SPLCV is not currently available due to the difficulties in obtaining purified virions that can be used as antigen for antiserum production. In attempts to obtain the coat protein (CP) of SPLCV for antibody production, primers were designed to amplify the CP gene. This gene was cloned into the expression vector pMAL-c2E as a fusion protein with maltose-binding protein, and transformed into Escherichia coli strain XL1-Blue. After gene induction, a fusion protein of 72 kDa was purified by amylose affinity chromatography. The yield of the purified fusion protein was approximately 200 μg/liter of bacterial culture. Digestion with enterokinase cleaved the fusion protein into a 42.5 kDa maltosebinding protein and a 29.4 kDa protein. The latter protein was identified by mass spectrometry analysis as the coat protein of SPLCV based on the fact that the mass spectrometry elucidated the sequences corresponding to 37% of amino acid positions of the SPLCV coat protein.展开更多
AIM: To investigate the change in eukaryotic gene expression profile in Caco-2 cells after infection with strains of Escherichia coli and commensal probiotic bacteria. METHODS: A 19 200 gene/expressed sequence tag gen...AIM: To investigate the change in eukaryotic gene expression profile in Caco-2 cells after infection with strains of Escherichia coli and commensal probiotic bacteria. METHODS: A 19 200 gene/expressed sequence tag gene chip was used to examine expression of genes after infection of Caco-2 cells with strains of normal flora E. coli,Lactobacillus plantarum,and a combination of the two. RESULTS: The cDNA microarray revealed up-regulation of 155 and down-regulation of 177 genes by E. coli . L. plantarum up-regulated 45 and down-regulated 36 genes. During mixed infection,27 genes were up-regulated and 59 were down-regulated,with nullification of stimulatory/inhibitory effects on most of the genes. Expression of several new genes was noted in this group. CONCLUSION: The commensal bacterial strains used in this study induced the expression of a large number of genes in colonocyte-like cultured cells and changed the expression of several genes involved in important cellular processes such as regulation of transcription,protein biosynthesis,metabolism,cell adhesion,ubiquitination,and apoptosis. Such changes induced by the presence of probiotic bacteria may shape the physiologic and pathologic responses they trigger in the host.展开更多
Objective:To express the soluble recombinant hemangiopoietin protein in E.coli BL21(DE3).Methods:Using human fetal live cDNA as a template,a partial cDNA fragment of HAPO coding N-terminal region was subcloned into pl...Objective:To express the soluble recombinant hemangiopoietin protein in E.coli BL21(DE3).Methods:Using human fetal live cDNA as a template,a partial cDNA fragment of HAPO coding N-terminal region was subcloned into plasmids pTrc99,pQE60 and pET32c to construct different recombinant prokaryotic expression systems.After selecting,the soluble rhHAPO fusion protein was expressed stably in E.coli BL21(DE3) by vector pET32c-HAPO and further isolated by nickelnitrilotriacetic acid(NTA) affinity chromatography.After cleavage with enterokinase,the rhHAPO protein was applied to Fast Flow SP sepharose column.Results:The rhHAPO protein had a purity of more than 95% and a good bioactivity based on the cell adhesion assay in ECV304 cells.Conclusion:We have established a protein engineering system to produce rhHAPO which may provide the possibility for clinical application.展开更多
The proteins Inscuteable and Staufen are key components during asymmetric cell division of neuroblasts for the development of Drosophila melanogaster. Expression and purification of both proteins has been a difficult ...The proteins Inscuteable and Staufen are key components during asymmetric cell division of neuroblasts for the development of Drosophila melanogaster. Expression and purification of both proteins has been a difficult task for structure-function studies. Based on codon optimization for protein expression in Escherichia coli, we have been able to produce, in soluble form, the C-terminal domains of Inscuteable and Staufen as chimeras with N-terminal maltose binding protein tag that contains a rigid linker between them for feasible crystallization. In addition, using an optimized synthetic gene, corresponding to the amino acid region 250 - 623 of Inscuteable fused to glutathione-S-transferase, low-scale expression experiments showed production of soluble protein. Finally, eukaryotic expression of Inscuteable in the methylothropic yeast Pichia pastoris failed to produce the Drosophila protein at detectable amounts, reinforcing the fact that E. coli still was the microorganism of choice for high-yield protein expression.展开更多
AIM:To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene tran-scription. METHODS:Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus ...AIM:To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene tran-scription. METHODS:Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation. RESULTS:Lpcat1 translocates into the nucleus from thecytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli , two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overex-pressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment.CONCLUSION:These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.展开更多
We developed a technique of generating nonthermal atmospheric plasma-activated solution that had broad-spectrum antibacterial properties. Plasma-activated phosphate-buffered saline (PBS) causes rapid inactivation of b...We developed a technique of generating nonthermal atmospheric plasma-activated solution that had broad-spectrum antibacterial properties. Plasma-activated phosphate-buffered saline (PBS) causes rapid inactivation of bacteria following generation of oxidative stress. However, dose optimization requires understanding of cellular mechanisms. The objective of this study was to explore genome-wise response to develop gene expression profile of Escherichia coli using DNA microarray following exposure to plasma-activated PBS solution. Upon exposure to plasma-treated PBS solution, E. coli cells had differentially expressed genes involved in oxidative stress, and cell envelope and membrane associated porin and transporters. The genes involved in house-keeping and metabolism, energy generation, motility and virulence were conversely downregulated. This is the first report which demonstrates a severe oxidative stress induced in E. coli cells in response to an exposure to nonequilibrium nonthermal dielectric-barrier discharge plasma-activated PBS solution, and the genes that are responsive to reactive oxygen species appeared to play a role in cellular stress. Such studies are important to identify targets of inactivation, and to understand plasma-treated solution and bacterial cell interactions.展开更多
OBJECTIVE: To investigate the role of the 25 kD hepatitis B e antigen (HBeAg) precursor that only exist inside hepatocytes and study its effect on the pathopoiesis of hepatitis B and QIAGEN expression and purification...OBJECTIVE: To investigate the role of the 25 kD hepatitis B e antigen (HBeAg) precursor that only exist inside hepatocytes and study its effect on the pathopoiesis of hepatitis B and QIAGEN expression and purification system. METHODS: Hepatitis B virus (HBV) preC/C gene for the 25 kD HBeAg precursor was cloned into the expression vector pQE30 and the 25 kD HBeAg precursor was expressed in Escherichia coli (E. coli) and purified. Its antigenicity for 21 kD mature HBeAg was tested by western blot analysis. RESULTS: Cloned fragments in the expression vector were sequenced and verified to be homogeneous with that of HBV (ayw subtype). Expression of the HBeAg precursor in E. coli under the transcriptional regulation of T5 promoter yielded a soluble cytosolic protein with an apparent molecular mass of 25 kD. Recombinant HBeAg precursor exhibited identical potencies with 21 kD mature HBeAg that reacted with anti-HBeAg antibodies. The purification rate of the expressed HBeAg precursor was up to 89.6% and the yield of purified HBeAg precursor from this procedure was 2.4 mg/L. CONCLUSION: 25 kD HBeAg precursor exhibited biological activity and might play an important role in pathopoiesis of hepatitis B.展开更多
Abstract: In order to identify the function of late embryogenesis abundant (LEA) genes, in vitro functional analyses were performed using an Escherichia coli heterologous expression system. Three soybean late embryoge...Abstract: In order to identify the function of late embryogenesis abundant (LEA) genes, in vitro functional analyses were performed using an Escherichia coli heterologous expression system. Three soybean late embryogenesis abundant (LEA) genes, PM11 (GenBank accession No. AF004805; group 1), PM30 (AF117884; group 3), and ZLDE-2 (AY351918; group 2), were cloned and expressed in a pET-28a system. The gene products were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by mass spectrometry. E. coli cells containing the recombinant plasmids or empty vector as controls were treated by salt and low temperature stress. Compared with control cells, the E. coli cells expressing either PM11 or PM30 showed a shorter lag period and improved growth when transferred to LB (Luria-Bertani) liquid media containing 800 mmol/L NaCl or 700 mmol/L KCl or after 4°C treatment. E. coli cells expressing ZLDE-2 did not show obvious growth improvement both in either high KCl medium or after 4°C treatment. The results indicate that the E. coli expression system is a simple, useful method to identify the functions of some stress-tolerant genes from plants.展开更多
Shikimic acid(SA) is the key synthetic material for the chemical synthesis of Oseltamivir, which is prescribed as the front-line treatment for serious cases of influenza. Multi-gene expression vector can be used for e...Shikimic acid(SA) is the key synthetic material for the chemical synthesis of Oseltamivir, which is prescribed as the front-line treatment for serious cases of influenza. Multi-gene expression vector can be used for expressing the plurality of the genes in one plasmid, so it is widely applied to increase the yield of metabolites. In the present study, on the basis of a shikimate kinase genetic defect strain Escherichia coli BL21(?aro L/aro K, DE3), the key enzyme genes aro G, aro B, tkt A and aro E of SA pathway were co-expressed and compared systematically by constructing a series of multi-gene expression vectors. The results showed that different gene co-expression combinations(two, three or four genes) or gene orders had different effects on the production of SA. SA production of the recombinant BL21-GBAE reached to 886.38 mg·L^(-1), which was 17-fold(P < 0.05) of the parent strain BL21(?aro L/aro K, DE3).展开更多
Objective: To achieve an optimized method for soluble expression of human carboxylesterase 1(hCE-1) in escherichia coil and purification by Ni2+-NTA agarose affinity chromatography, to get improved protein yield and p...Objective: To achieve an optimized method for soluble expression of human carboxylesterase 1(hCE-1) in escherichia coil and purification by Ni2+-NTA agarose affinity chromatography, to get improved protein yield and purity for further development of hepatocellular carcinoma(HCC) diagnosis ELISA kits. Methods: The best antigen epitopes of hCE1 were predicted by comparing secondary structure, flexible regions, hydrophilicity, antigenic index surface probability of residues. Afterwards,pET-42a(+) with a His-tag and a GST-tag was applied to form recombinant plasmid pET-42a(+)/hCE1, which facilitated purification when using Ni2+-NTA agarose affinity chromatography. Protein quality was measured by SDS-PAGE and BCA protein assay.Western-blot identification was also performed to ensure the correct expression of hCE1protein. Results: The residues from 500 to 567 near C-terminal of hCE1 protein were considered the best epitopes which exhibited high hydrophilicity and high surface probability and relatively flexible secondary structure and low homology compared with hCE2 and hCE3. His-hCE1 500-567 fusion protein was achieved by IPTG-inducted expression with an expected mass of 42 kDa. After purification, the final product was specially identified, which reached over 95% purity and more than 10 mg/L of microbial culture. In Western blot, the purified fusion protein was recognized by anti-hCE1monoclonal antibody, along with previous sequencing validation, which demonstrated the correct preparation of soluble hCE1 protein. Conclusion: This is an efficacious and affordable strategy to generate fusion hCE1 of high quality in E coli, which facilitates preparation of hCE1 monoclonal antibody and further HCC diagnosis research.展开更多
Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. T...Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. To express the full-length Tat protein in E.coli, the tat gene was cloned from an HIV infected patient by overlapping PCR. Rare codon usage analysis showed that rare E.coli codons, especially consecutive rare codons for Arg, account for 14% (14 of 101) rare E.coli codons in the tat gene. The expression of the HIV-1 tat gene was verified to be very poor in strain BL21 (DE3) due to the abundance of rare codons; however, tat gene expression was found to be very efficient in the host strain of Rosetta-gami B (DE3), which was supplemented with six rare tRNAs for Arg, Leu, Ile and Pro. Subsequent purification revealed that the proteins are soluble and unusually, the tagged Tat can form dimers independent of cystine disulfide bonds. The purity, integrity and molecular weight of the Tat protein were demonstrated by MALDI-TOF mass spectrometry. Reporter gene activating assay was further confirmed by investigating the transactivation activity of the recombinant Tat protein. Our improved strategy for efficient high level expression and purification of soluble Tat protein has paved the way to fully investigate its exogenous function.展开更多
Background Infections caused by gram-negative bacteria (GNB) often lead to high mortality in common clinical settings. The effect of traditional antibiotic therapy is hindered by drug-resistant bacteria and unneutra...Background Infections caused by gram-negative bacteria (GNB) often lead to high mortality in common clinical settings. The effect of traditional antibiotic therapy is hindered by drug-resistant bacteria and unneutralizable endotoxin. Few effective methods can protect high risk patients from bacterial infection. This study explored the protection of adeno-associated virus 2 (AAV2)-bacteriacidal permeability increasing protein 700 (BPI700) -fragment crystallizable gamma one 700 (Fcγ1700) chimeric gene transferred mice against the minimal lethal dose (MLD) of E.coli and application of gene therapy for bacterial infection. Methods After AAV2-BPI700-Fcγ1700 virus transfection, dot blotting and Western blotting were used to detect the target gene products in Chinese hamster ovary-K1 cells (CHO-Klcells). Reverse transcription-polymerase chain reaction and immunohistochemical assay were carried out to show the target gene expression in mice. Modified BPI-enzyme linked immunosorbent assay was used to identify the target gene products in murine serum. The protection of BPI700-Fcγ1700 gene transferred mice was examined by survival rate after MLD E. coli challenge. Colony forming unit (CFU) count, limulus amebocyte lysate kit and cytokine kit were used to quantify the bacteria, the level of endotoxin, and proinflammatory cytokine. Results BPI1-99-Fcγ1 protein was identified in the CHO-K1 cell culture supernatant, injected muscles and serum of the gene transferred mice. After MLD E. coli challenge, the survival rate of AAV2-BPI700-Fcγ1700 gene transferred mice (36.7%) was significantly higher than that of AAV2-enhanced green fluorescent protein (AAV2- EGFP) gene transferred mice (3.3%) and PBS control mice (5.6%). The survival rate of AAV2-BPI700-Fcγ1700 gene transferred mice treated with cefuroxime sodium was 65.0%. The bacterium number in main viscera, the levels of endotoxin and proinflammatory cytokine (tumor necrcsis factor-α and interleukin-1β) in serum of the AAV2-BPI700-Fcγ1700 gene transferred mice were markedly lower than that of PBS control mice (P〈0.01). Conclusions AAV2-BPI700-Fcγ1700 gene transferred mice can resist MLD E. coli infection through expressing BPI1-199-Fcγ1 protein. Our findings suggested that AAV2 mediated BPI700-Fcγ1700 gene delivery could be used for protection and treatment of clinical GNB infection in high-risk individuals.展开更多
INTRODUCTIONHelicobacter pylori (H . pylori) is associated with the development of chronic gastritis ,peptic ulcer and gastric cancer and gastric MALT lymphoma[1-9],H .pylori has many antigens ,including urease ,heat ...INTRODUCTIONHelicobacter pylori (H . pylori) is associated with the development of chronic gastritis ,peptic ulcer and gastric cancer and gastric MALT lymphoma[1-9],H .pylori has many antigens ,including urease ,heat shock protein and vacuolating cytotoxin and so on ,and urease is an important factor in the colinization of the gastric mucosa and suspected to cause damage to the gastric mucosa[10-14].At the same time ,urdase is also one of the important protective antigens .展开更多
AIM: To construct the expression vectors for prokaryotic and eukaryotic human augmenter of liver regeneration (hALR) and to study their biological activity. METHODS: hALRcDNA clone was obtained from plasmid pGEM-T...AIM: To construct the expression vectors for prokaryotic and eukaryotic human augmenter of liver regeneration (hALR) and to study their biological activity. METHODS: hALRcDNA clone was obtained from plasmid pGEM-T-hALR, and cDNA was subcloned into the prokatyotic expression vector pGEX-4T-2. The recombinant vector and pGEX-4T-2hALR were identified by enzyme digestion and DNA sequencing and transformed into E coli JM109. The positively selected clone was induced by the expression of GST-hALR fusion protein with IPTG, then the fusion protein was purified by glutathine s-transferase (GST) sepharose 4B affinity chromatography, cleaved by thrombin and the hALR monomer was obtained and detected by measuring H thymidine incorporation. RESULTS: The product of PCR from plasmid pGEM-T- hALR was examined by 1.5% sepharose electrophoresis. The specific strap was coincident with the theoretical one. The sequence was accurate and pGEX-4T-hALP digested by enzymes was coincident with the theoretical one. The sequence was accurate and the fragment was inserted in the positive direction. The recombinant vector was transformed into E coli JM109. SDS-PAGE proved that the induced expressive fusion protein showed a single band with a molecular weight of 41 kDa. The product was purified and cleaved. The molecular weights of GST and hALR were 26 kDa, 15 kDa respectively. The recombinant fusion protein accounted for 31% of the total soluble protein of bacterial lysate. HALR added to the culture medium of adult rat hepatocytes in primary culture and HepG2 cell line could significantly enhance the rate of DNA synthesis compared to the relevant control groups (P 〈 0.01).CONCLUSION: Purified hALR has the ability to stimulate DNA synthesis of adult rat hepatocytes in primary culture and HepG2 cells in vitro, and can provide evidence for its clinical application.展开更多
Objective: To express nitroreductase gene NOR1 in Escherichia coli and to purify the expressed protein in order to get the polyclonal antibody of NOR1. Methods: The full length of NOR1 gene was amplified by reverse tr...Objective: To express nitroreductase gene NOR1 in Escherichia coli and to purify the expressed protein in order to get the polyclonal antibody of NOR1. Methods: The full length of NOR1 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and digested with BamHI and XhoI restriction endonucleases. The plasmid pGEX-4T-2 was also digested with BamHI and XhoI, then the NOR1 gene was inserted into vector pGEX-4T-2. The recombinant expression vector pGEX-4T-2/NOR1 was identified by sequencing and restriction enzymes digestion. E.coli Jm105 transformed with the recombinant plasmid was induced by IPTG to express the GST fusion protein. The purified targeted protein obtained by affinity chromatography was used to immunize New Zealand rabbits to acquire antiserum. Antiserum was analyzed with immunoblot. Results: The 1.25 kb NOR1 gene was successfully isolated. After induction, a new anticipated protein of 74 kDa appeared on sodium dodecylsulfate polyacrylamide (SDS-PAGE). The result was confirmed by Western blot analysis, and the purified targeted protein was obtained by affinity chromatography. The titer of antiserum was 1:8. Conclusion: A high level of expression of GST-NOR1 is obtained in JM 105, and its antiserum can be prepared successfully.展开更多
To construct a recombinant plasmid Pet23a-M, the gene encoding severe acute respiratory syndrome (SARS) coronavirus membrane protein was amplified by RT-PCR and cloned into the expression plasmid Pet23a. Results of re...To construct a recombinant plasmid Pet23a-M, the gene encoding severe acute respiratory syndrome (SARS) coronavirus membrane protein was amplified by RT-PCR and cloned into the expression plasmid Pet23a. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis revealed that the cloned DNA sequence was the same as that reported. The recombinants were transformed into Escherichia coli (E.Coli) BL21 (DE3) and induced by Isopropyl-β-D-thiogalactopyranoside (IPTG). The expression of 27 kD (1 kD=0.9921 ku) protein was detected by SDS-PAGE and pured by metal chelated chromatography. Results of Western-blot showed that this expressed protein could react with antibodies in sera of SARS patients during convalescence. This provided the basis for the further study on SARS virus vaccine and diagnostic agents.展开更多
[Objective] The aim was to construct the fusion expression vector of polyphosphate kinase(PPK) and green fluorescent protein(GFP) genes.[Method] In this study,the primers were designed based on PPK gene sequence(...[Objective] The aim was to construct the fusion expression vector of polyphosphate kinase(PPK) and green fluorescent protein(GFP) genes.[Method] In this study,the primers were designed based on PPK gene sequence(L03719) of E.coli DH5α in Genbank.Genomic DNA of E.coli DH 5α was extracted as template for the amplification of PPK gene by PCR method.By using In-Fusion@ HD Cloning Kit,the PPK gene was directionally cloned into NcoI site of the pCAMBIA1302 vector.[Result] Sequencing results showed that the 2.0 kb long fragment of PPK gene was inserted into the plant-based expression vector pCAMBIA1302 in front of GFP gene.[Conclusion] The fusion expression vector of PPK and GFP genes were successfully constructed.展开更多
AIM: To study the epitope distribution of hepatitis G virus (HGV) and to seek for the potential recombinant antigens for the development of HGV diagnostic reagents. METHODS: Fourteen clones encompassing HGV gene fragm...AIM: To study the epitope distribution of hepatitis G virus (HGV) and to seek for the potential recombinant antigens for the development of HGV diagnostic reagents. METHODS: Fourteen clones encompassing HGV gene fragments from core to NS3 and NS5 were constructed using prokaryotic expression vector pRSET and (or) pGEX, and expressed in E.coli. Western blotting and ELISA were used to detect the immunoreactivity of these recombinant proteins. RESULTS: One clone with HGV fragment from core to E1 (G1), one from E2 (G31), three from NS3 (G6, G61, G7), one from NS5B (G821) and one chimeric fragment from NS3 and NS5B (G61-821) could be expressed well and showed obvious immunoreactivity by Western blotting. One clone with HGV framment from NS5B (G82) was also well expressed, but could not show immunoreactivity by Western blotting. No obvious expression was found in the other six clones. All the expressed recombinant proteins were in inclusion body form, except the protein G61 which could be expressed in soluble form. Further purified recombinant proteins G1, G31, G61, G821 and G61-821 were detected in indirected ELISA as coating antigen respectively. Only recombinant G1 could still show immunoreactivity, and the other four recombinant proteins failed to react to the HGV antibody positive sera. Western blotting results indicated that the immunoactivity of these four recombinant proteins were lost during purification. CONCLUSION: Core to E1, E2, NS3 and NS5 fragment of HGV contain antigenic epitopes, which could be produced in prokaryotically expressed recombinant proteins. A high-yield recombinant protein (G1) located in HGV core to E1 could remain its epitope after purification, which showed the potential that G1 could be used as a coating antigen to develop an ELISA kit for HGV specific antibody diagnosis.展开更多
AIM: To study the influence of redox environment of Escherichia coli (E(?) coli) cytoplasm on disulfide bond formation of recombinant proteins. METHODS: Bovine fibrobllast growth factor (BbFGF) was selected as a model...AIM: To study the influence of redox environment of Escherichia coli (E(?) coli) cytoplasm on disulfide bond formation of recombinant proteins. METHODS: Bovine fibrobllast growth factor (BbFGF) was selected as a model of simple proteins with a single disulfide bond and free cysteines. Anti-HBsAg single-chain Fv (HBscFv), an artificial multidomain protein, was selected as the model molecule of complex protein with 2 disulfide bonds. A BbFGF-producing plasmid, pJN-BbFGF, and a HBscFv producing-plasmid, pQE-HBscFv, were constructed and transformed into E(?)coli strains BL21(DE3) and M15[pREP4] respectively. At the same time, both plasmids were transformed into a reductase-deficient host strain,E(?)coli Origami(DE3). The 4 recombinant E(?)coli strains were cultured and the target proteins were purified. Solubility and bioactivity of recombinant BbFGF and HBscFv produced in different host strains were analyzed and compared respectively. RESULTS: All recombinant E(?)coli strains could efficiently produce target proteins. The level of BbFGF in BL21(DE3) was 15-23% of the total protein, and was 5-10% in Origami (DE3). In addition, 65% of the BbFGF produced in BL21(DE3) formed into inclusion body in the cytoplasm, and all the target proteins became soluble in Origami (DE3). The bioactivity of BbFGF purified from Origami(DE3) was higher than its counterpart from BL21(DE3). The ED50 of BbFGF from Origami(DE3) and BL21(DE3) was 1.6 μg/L and 2.2 μg/L, respectively. Both HBscFv formed into inclusion body in the cytoplasm of M15[pQE-HBscFv] or Origami[pQE-HBscFv]. But the supernatant of Origami [pQE-HBscFv] lysate displayed weak bioactivity and its counterpart from M15[pQE-HBscFv] did not display any bioactivity. The soluble HBscFv in Origami[pQE-HBscFv] was purified to be 1-2 mg/L and its affinity constant was determined to be 2.62×107 mol/L. The yield of native HBscFv refolded from inclusion body in M15[pQE-HBscFv] was 30-35 mg/L and the affinity constant was 1.98×107 mol/L. There was no significant difference between the bioactivity of HBscFvs refolded from the inclusion bodies produced in different host strains. CONCLUSION: Modification of the redox environment of E(?)coli cytoplasm can significantly improve the folding of recombinant disulfide-bonded proteins produced in it.展开更多
文摘Sweet potato is one of the first natural GMOs, genetically modified 8000 years ago by Agrobacterium rhizogenes as reported recently by Kyndt et al. A section of 10 kbp long DNA (Transferred- DNA or T-DNA) of the Ri (Root-inducing) plasmid was transferred to the plant genome by A. rhizo-genes and has been maintained in all 291 hexaploid sweet potato cultivars of the world. The maintenance in the sweet potato genome and expression of two T-DNA genes for tryptophan-2-monooxygenease (iaaM) and for indole-3-acetamide hydrolase (iaaH) are likely to be physiologically significant since these enzymes convert tryptophan to indole-3-acetic acid, a major plant growth hormone auxin. Sweet potato (Ipomoea batatas (L.) Lam) is ranked the third most important root crop after potato and cassava, and the seventh in global food crop production with more than 126 million metric tons. Although sweet potato originated in Central or South America, China currently produces over 86% of world production with 109 million metric tons. In the United States, North Carolina is the leading producer with 38.5% of the 2007 sweet potato production, followed by California, Mississippi, and Louisiana with 23%, 19%, and 15.9%, respectively. Leaf curl virus diseases have been reported in sweet potato throughout the world. One of the causal agents is Sweet potato leaf curl virus (SPLCV) belonging to the genus Begomovirus (family Geminiviridae). Although SPLCV does not cause symptoms on Beauregard, one of the most predominant sweet potato cultivars in the US, it can reduce the yield up to 26%. Serological detection of SPLCV is not currently available due to the difficulties in obtaining purified virions that can be used as antigen for antiserum production. In attempts to obtain the coat protein (CP) of SPLCV for antibody production, primers were designed to amplify the CP gene. This gene was cloned into the expression vector pMAL-c2E as a fusion protein with maltose-binding protein, and transformed into Escherichia coli strain XL1-Blue. After gene induction, a fusion protein of 72 kDa was purified by amylose affinity chromatography. The yield of the purified fusion protein was approximately 200 μg/liter of bacterial culture. Digestion with enterokinase cleaved the fusion protein into a 42.5 kDa maltosebinding protein and a 29.4 kDa protein. The latter protein was identified by mass spectrometry analysis as the coat protein of SPLCV based on the fact that the mass spectrometry elucidated the sequences corresponding to 37% of amino acid positions of the SPLCV coat protein.
基金Supported by the Department of Pediatrics and GCRC (M01- RR-16500), University of Maryland Baltimore, with partial funding from NIH grants UO1 HD 40574 and RO1 HD 053719
文摘AIM: To investigate the change in eukaryotic gene expression profile in Caco-2 cells after infection with strains of Escherichia coli and commensal probiotic bacteria. METHODS: A 19 200 gene/expressed sequence tag gene chip was used to examine expression of genes after infection of Caco-2 cells with strains of normal flora E. coli,Lactobacillus plantarum,and a combination of the two. RESULTS: The cDNA microarray revealed up-regulation of 155 and down-regulation of 177 genes by E. coli . L. plantarum up-regulated 45 and down-regulated 36 genes. During mixed infection,27 genes were up-regulated and 59 were down-regulated,with nullification of stimulatory/inhibitory effects on most of the genes. Expression of several new genes was noted in this group. CONCLUSION: The commensal bacterial strains used in this study induced the expression of a large number of genes in colonocyte-like cultured cells and changed the expression of several genes involved in important cellular processes such as regulation of transcription,protein biosynthesis,metabolism,cell adhesion,ubiquitination,and apoptosis. Such changes induced by the presence of probiotic bacteria may shape the physiologic and pathologic responses they trigger in the host.
基金the Natural Science Foundation of China (30300186)the Grant of 863 projects from the Ministry of Science & Technology of China (2002AA223354)
文摘Objective:To express the soluble recombinant hemangiopoietin protein in E.coli BL21(DE3).Methods:Using human fetal live cDNA as a template,a partial cDNA fragment of HAPO coding N-terminal region was subcloned into plasmids pTrc99,pQE60 and pET32c to construct different recombinant prokaryotic expression systems.After selecting,the soluble rhHAPO fusion protein was expressed stably in E.coli BL21(DE3) by vector pET32c-HAPO and further isolated by nickelnitrilotriacetic acid(NTA) affinity chromatography.After cleavage with enterokinase,the rhHAPO protein was applied to Fast Flow SP sepharose column.Results:The rhHAPO protein had a purity of more than 95% and a good bioactivity based on the cell adhesion assay in ECV304 cells.Conclusion:We have established a protein engineering system to produce rhHAPO which may provide the possibility for clinical application.
文摘The proteins Inscuteable and Staufen are key components during asymmetric cell division of neuroblasts for the development of Drosophila melanogaster. Expression and purification of both proteins has been a difficult task for structure-function studies. Based on codon optimization for protein expression in Escherichia coli, we have been able to produce, in soluble form, the C-terminal domains of Inscuteable and Staufen as chimeras with N-terminal maltose binding protein tag that contains a rigid linker between them for feasible crystallization. In addition, using an optimized synthetic gene, corresponding to the amino acid region 250 - 623 of Inscuteable fused to glutathione-S-transferase, low-scale expression experiments showed production of soluble protein. Finally, eukaryotic expression of Inscuteable in the methylothropic yeast Pichia pastoris failed to produce the Drosophila protein at detectable amounts, reinforcing the fact that E. coli still was the microorganism of choice for high-yield protein expression.
基金Supported by A United States National Institutes of Health R01 grant HL091916 to Zhao Yan American Heart Association grant 12SDG12040330 to Zou C, in part
文摘AIM:To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene tran-scription. METHODS:Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation. RESULTS:Lpcat1 translocates into the nucleus from thecytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli , two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overex-pressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment.CONCLUSION:These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.
文摘We developed a technique of generating nonthermal atmospheric plasma-activated solution that had broad-spectrum antibacterial properties. Plasma-activated phosphate-buffered saline (PBS) causes rapid inactivation of bacteria following generation of oxidative stress. However, dose optimization requires understanding of cellular mechanisms. The objective of this study was to explore genome-wise response to develop gene expression profile of Escherichia coli using DNA microarray following exposure to plasma-activated PBS solution. Upon exposure to plasma-treated PBS solution, E. coli cells had differentially expressed genes involved in oxidative stress, and cell envelope and membrane associated porin and transporters. The genes involved in house-keeping and metabolism, energy generation, motility and virulence were conversely downregulated. This is the first report which demonstrates a severe oxidative stress induced in E. coli cells in response to an exposure to nonequilibrium nonthermal dielectric-barrier discharge plasma-activated PBS solution, and the genes that are responsive to reactive oxygen species appeared to play a role in cellular stress. Such studies are important to identify targets of inactivation, and to understand plasma-treated solution and bacterial cell interactions.
基金TheworkwassupportedbygrantsfromtheNationalNaturalScienceFoundationofChina (No 3 963 0 2 80 )
文摘OBJECTIVE: To investigate the role of the 25 kD hepatitis B e antigen (HBeAg) precursor that only exist inside hepatocytes and study its effect on the pathopoiesis of hepatitis B and QIAGEN expression and purification system. METHODS: Hepatitis B virus (HBV) preC/C gene for the 25 kD HBeAg precursor was cloned into the expression vector pQE30 and the 25 kD HBeAg precursor was expressed in Escherichia coli (E. coli) and purified. Its antigenicity for 21 kD mature HBeAg was tested by western blot analysis. RESULTS: Cloned fragments in the expression vector were sequenced and verified to be homogeneous with that of HBV (ayw subtype). Expression of the HBeAg precursor in E. coli under the transcriptional regulation of T5 promoter yielded a soluble cytosolic protein with an apparent molecular mass of 25 kD. Recombinant HBeAg precursor exhibited identical potencies with 21 kD mature HBeAg that reacted with anti-HBeAg antibodies. The purification rate of the expressed HBeAg precursor was up to 89.6% and the yield of purified HBeAg precursor from this procedure was 2.4 mg/L. CONCLUSION: 25 kD HBeAg precursor exhibited biological activity and might play an important role in pathopoiesis of hepatitis B.
基金the National Special Program for Research and Industrialization of Transgenic Plants,国家自然科学基金,Foundation for Key Teachers in Universities
文摘Abstract: In order to identify the function of late embryogenesis abundant (LEA) genes, in vitro functional analyses were performed using an Escherichia coli heterologous expression system. Three soybean late embryogenesis abundant (LEA) genes, PM11 (GenBank accession No. AF004805; group 1), PM30 (AF117884; group 3), and ZLDE-2 (AY351918; group 2), were cloned and expressed in a pET-28a system. The gene products were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by mass spectrometry. E. coli cells containing the recombinant plasmids or empty vector as controls were treated by salt and low temperature stress. Compared with control cells, the E. coli cells expressing either PM11 or PM30 showed a shorter lag period and improved growth when transferred to LB (Luria-Bertani) liquid media containing 800 mmol/L NaCl or 700 mmol/L KCl or after 4°C treatment. E. coli cells expressing ZLDE-2 did not show obvious growth improvement both in either high KCl medium or after 4°C treatment. The results indicate that the E. coli expression system is a simple, useful method to identify the functions of some stress-tolerant genes from plants.
基金supported by National Important Special Foundation of the New Drug Development(2012ZX 09301002-003 and 2014ZX09201001-012)Shanghai Innovation Action Plan of Science and Technology(14431905900)
文摘Shikimic acid(SA) is the key synthetic material for the chemical synthesis of Oseltamivir, which is prescribed as the front-line treatment for serious cases of influenza. Multi-gene expression vector can be used for expressing the plurality of the genes in one plasmid, so it is widely applied to increase the yield of metabolites. In the present study, on the basis of a shikimate kinase genetic defect strain Escherichia coli BL21(?aro L/aro K, DE3), the key enzyme genes aro G, aro B, tkt A and aro E of SA pathway were co-expressed and compared systematically by constructing a series of multi-gene expression vectors. The results showed that different gene co-expression combinations(two, three or four genes) or gene orders had different effects on the production of SA. SA production of the recombinant BL21-GBAE reached to 886.38 mg·L^(-1), which was 17-fold(P < 0.05) of the parent strain BL21(?aro L/aro K, DE3).
基金The National Natural Science Foundation of Chinagrant number:31170092+1 种基金Hunan Provincial Natural Science Foundation of Chinagrant number:13JJ2021
文摘Objective: To achieve an optimized method for soluble expression of human carboxylesterase 1(hCE-1) in escherichia coil and purification by Ni2+-NTA agarose affinity chromatography, to get improved protein yield and purity for further development of hepatocellular carcinoma(HCC) diagnosis ELISA kits. Methods: The best antigen epitopes of hCE1 were predicted by comparing secondary structure, flexible regions, hydrophilicity, antigenic index surface probability of residues. Afterwards,pET-42a(+) with a His-tag and a GST-tag was applied to form recombinant plasmid pET-42a(+)/hCE1, which facilitated purification when using Ni2+-NTA agarose affinity chromatography. Protein quality was measured by SDS-PAGE and BCA protein assay.Western-blot identification was also performed to ensure the correct expression of hCE1protein. Results: The residues from 500 to 567 near C-terminal of hCE1 protein were considered the best epitopes which exhibited high hydrophilicity and high surface probability and relatively flexible secondary structure and low homology compared with hCE2 and hCE3. His-hCE1 500-567 fusion protein was achieved by IPTG-inducted expression with an expected mass of 42 kDa. After purification, the final product was specially identified, which reached over 95% purity and more than 10 mg/L of microbial culture. In Western blot, the purified fusion protein was recognized by anti-hCE1monoclonal antibody, along with previous sequencing validation, which demonstrated the correct preparation of soluble hCE1 protein. Conclusion: This is an efficacious and affordable strategy to generate fusion hCE1 of high quality in E coli, which facilitates preparation of hCE1 monoclonal antibody and further HCC diagnosis research.
基金This work was supported by a grant fromthe International Atomic Energy Agency (IAEA) (grantNo: 12510/R1) a grant from the Chinese NationalNatural Science Foundation (grant No: 30400120)
文摘Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. To express the full-length Tat protein in E.coli, the tat gene was cloned from an HIV infected patient by overlapping PCR. Rare codon usage analysis showed that rare E.coli codons, especially consecutive rare codons for Arg, account for 14% (14 of 101) rare E.coli codons in the tat gene. The expression of the HIV-1 tat gene was verified to be very poor in strain BL21 (DE3) due to the abundance of rare codons; however, tat gene expression was found to be very efficient in the host strain of Rosetta-gami B (DE3), which was supplemented with six rare tRNAs for Arg, Leu, Ile and Pro. Subsequent purification revealed that the proteins are soluble and unusually, the tagged Tat can form dimers independent of cystine disulfide bonds. The purity, integrity and molecular weight of the Tat protein were demonstrated by MALDI-TOF mass spectrometry. Reporter gene activating assay was further confirmed by investigating the transactivation activity of the recombinant Tat protein. Our improved strategy for efficient high level expression and purification of soluble Tat protein has paved the way to fully investigate its exogenous function.
基金This research was supported by Beijing Nature Science Foundation & Beijing Municipal Education Commission Foundation (No.KZ200410025).
文摘Background Infections caused by gram-negative bacteria (GNB) often lead to high mortality in common clinical settings. The effect of traditional antibiotic therapy is hindered by drug-resistant bacteria and unneutralizable endotoxin. Few effective methods can protect high risk patients from bacterial infection. This study explored the protection of adeno-associated virus 2 (AAV2)-bacteriacidal permeability increasing protein 700 (BPI700) -fragment crystallizable gamma one 700 (Fcγ1700) chimeric gene transferred mice against the minimal lethal dose (MLD) of E.coli and application of gene therapy for bacterial infection. Methods After AAV2-BPI700-Fcγ1700 virus transfection, dot blotting and Western blotting were used to detect the target gene products in Chinese hamster ovary-K1 cells (CHO-Klcells). Reverse transcription-polymerase chain reaction and immunohistochemical assay were carried out to show the target gene expression in mice. Modified BPI-enzyme linked immunosorbent assay was used to identify the target gene products in murine serum. The protection of BPI700-Fcγ1700 gene transferred mice was examined by survival rate after MLD E. coli challenge. Colony forming unit (CFU) count, limulus amebocyte lysate kit and cytokine kit were used to quantify the bacteria, the level of endotoxin, and proinflammatory cytokine. Results BPI1-99-Fcγ1 protein was identified in the CHO-K1 cell culture supernatant, injected muscles and serum of the gene transferred mice. After MLD E. coli challenge, the survival rate of AAV2-BPI700-Fcγ1700 gene transferred mice (36.7%) was significantly higher than that of AAV2-enhanced green fluorescent protein (AAV2- EGFP) gene transferred mice (3.3%) and PBS control mice (5.6%). The survival rate of AAV2-BPI700-Fcγ1700 gene transferred mice treated with cefuroxime sodium was 65.0%. The bacterium number in main viscera, the levels of endotoxin and proinflammatory cytokine (tumor necrcsis factor-α and interleukin-1β) in serum of the AAV2-BPI700-Fcγ1700 gene transferred mice were markedly lower than that of PBS control mice (P〈0.01). Conclusions AAV2-BPI700-Fcγ1700 gene transferred mice can resist MLD E. coli infection through expressing BPI1-199-Fcγ1 protein. Our findings suggested that AAV2 mediated BPI700-Fcγ1700 gene delivery could be used for protection and treatment of clinical GNB infection in high-risk individuals.
基金Supported by the National Major Science and Technology Projects,No.96-901-01-54.
文摘INTRODUCTIONHelicobacter pylori (H . pylori) is associated with the development of chronic gastritis ,peptic ulcer and gastric cancer and gastric MALT lymphoma[1-9],H .pylori has many antigens ,including urease ,heat shock protein and vacuolating cytotoxin and so on ,and urease is an important factor in the colinization of the gastric mucosa and suspected to cause damage to the gastric mucosa[10-14].At the same time ,urdase is also one of the important protective antigens .
基金Supported by National "863" Program of China , No. 2002AA214011
文摘AIM: To construct the expression vectors for prokaryotic and eukaryotic human augmenter of liver regeneration (hALR) and to study their biological activity. METHODS: hALRcDNA clone was obtained from plasmid pGEM-T-hALR, and cDNA was subcloned into the prokatyotic expression vector pGEX-4T-2. The recombinant vector and pGEX-4T-2hALR were identified by enzyme digestion and DNA sequencing and transformed into E coli JM109. The positively selected clone was induced by the expression of GST-hALR fusion protein with IPTG, then the fusion protein was purified by glutathine s-transferase (GST) sepharose 4B affinity chromatography, cleaved by thrombin and the hALR monomer was obtained and detected by measuring H thymidine incorporation. RESULTS: The product of PCR from plasmid pGEM-T- hALR was examined by 1.5% sepharose electrophoresis. The specific strap was coincident with the theoretical one. The sequence was accurate and pGEX-4T-hALP digested by enzymes was coincident with the theoretical one. The sequence was accurate and the fragment was inserted in the positive direction. The recombinant vector was transformed into E coli JM109. SDS-PAGE proved that the induced expressive fusion protein showed a single band with a molecular weight of 41 kDa. The product was purified and cleaved. The molecular weights of GST and hALR were 26 kDa, 15 kDa respectively. The recombinant fusion protein accounted for 31% of the total soluble protein of bacterial lysate. HALR added to the culture medium of adult rat hepatocytes in primary culture and HepG2 cell line could significantly enhance the rate of DNA synthesis compared to the relevant control groups (P 〈 0.01).CONCLUSION: Purified hALR has the ability to stimulate DNA synthesis of adult rat hepatocytes in primary culture and HepG2 cells in vitro, and can provide evidence for its clinical application.
文摘Objective: To express nitroreductase gene NOR1 in Escherichia coli and to purify the expressed protein in order to get the polyclonal antibody of NOR1. Methods: The full length of NOR1 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and digested with BamHI and XhoI restriction endonucleases. The plasmid pGEX-4T-2 was also digested with BamHI and XhoI, then the NOR1 gene was inserted into vector pGEX-4T-2. The recombinant expression vector pGEX-4T-2/NOR1 was identified by sequencing and restriction enzymes digestion. E.coli Jm105 transformed with the recombinant plasmid was induced by IPTG to express the GST fusion protein. The purified targeted protein obtained by affinity chromatography was used to immunize New Zealand rabbits to acquire antiserum. Antiserum was analyzed with immunoblot. Results: The 1.25 kb NOR1 gene was successfully isolated. After induction, a new anticipated protein of 74 kDa appeared on sodium dodecylsulfate polyacrylamide (SDS-PAGE). The result was confirmed by Western blot analysis, and the purified targeted protein was obtained by affinity chromatography. The titer of antiserum was 1:8. Conclusion: A high level of expression of GST-NOR1 is obtained in JM 105, and its antiserum can be prepared successfully.
文摘To construct a recombinant plasmid Pet23a-M, the gene encoding severe acute respiratory syndrome (SARS) coronavirus membrane protein was amplified by RT-PCR and cloned into the expression plasmid Pet23a. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis revealed that the cloned DNA sequence was the same as that reported. The recombinants were transformed into Escherichia coli (E.Coli) BL21 (DE3) and induced by Isopropyl-β-D-thiogalactopyranoside (IPTG). The expression of 27 kD (1 kD=0.9921 ku) protein was detected by SDS-PAGE and pured by metal chelated chromatography. Results of Western-blot showed that this expressed protein could react with antibodies in sera of SARS patients during convalescence. This provided the basis for the further study on SARS virus vaccine and diagnostic agents.
基金Supported by National Natural Science Foundation of China(31070451)Qianjiang Talent Project of Zhejiang Province(2009R10016)Zhejiang Provincial Natural Science Foundation of China(Y5110067)~~
文摘[Objective] The aim was to construct the fusion expression vector of polyphosphate kinase(PPK) and green fluorescent protein(GFP) genes.[Method] In this study,the primers were designed based on PPK gene sequence(L03719) of E.coli DH5α in Genbank.Genomic DNA of E.coli DH 5α was extracted as template for the amplification of PPK gene by PCR method.By using In-Fusion@ HD Cloning Kit,the PPK gene was directionally cloned into NcoI site of the pCAMBIA1302 vector.[Result] Sequencing results showed that the 2.0 kb long fragment of PPK gene was inserted into the plant-based expression vector pCAMBIA1302 in front of GFP gene.[Conclusion] The fusion expression vector of PPK and GFP genes were successfully constructed.
基金Supported by National 863 Project,No.102-07-02-079th Five-Year Sci-Tech Plan,No.96-906A-03-08
文摘AIM: To study the epitope distribution of hepatitis G virus (HGV) and to seek for the potential recombinant antigens for the development of HGV diagnostic reagents. METHODS: Fourteen clones encompassing HGV gene fragments from core to NS3 and NS5 were constructed using prokaryotic expression vector pRSET and (or) pGEX, and expressed in E.coli. Western blotting and ELISA were used to detect the immunoreactivity of these recombinant proteins. RESULTS: One clone with HGV fragment from core to E1 (G1), one from E2 (G31), three from NS3 (G6, G61, G7), one from NS5B (G821) and one chimeric fragment from NS3 and NS5B (G61-821) could be expressed well and showed obvious immunoreactivity by Western blotting. One clone with HGV framment from NS5B (G82) was also well expressed, but could not show immunoreactivity by Western blotting. No obvious expression was found in the other six clones. All the expressed recombinant proteins were in inclusion body form, except the protein G61 which could be expressed in soluble form. Further purified recombinant proteins G1, G31, G61, G821 and G61-821 were detected in indirected ELISA as coating antigen respectively. Only recombinant G1 could still show immunoreactivity, and the other four recombinant proteins failed to react to the HGV antibody positive sera. Western blotting results indicated that the immunoactivity of these four recombinant proteins were lost during purification. CONCLUSION: Core to E1, E2, NS3 and NS5 fragment of HGV contain antigenic epitopes, which could be produced in prokaryotically expressed recombinant proteins. A high-yield recombinant protein (G1) located in HGV core to E1 could remain its epitope after purification, which showed the potential that G1 could be used as a coating antigen to develop an ELISA kit for HGV specific antibody diagnosis.
基金Supported by the National Natural Science Foundation of China,No. 30371661 and No. 30400071and the Natural Science Foundation for Research Team of Guangdong Province, China, No. 2004E039213
文摘AIM: To study the influence of redox environment of Escherichia coli (E(?) coli) cytoplasm on disulfide bond formation of recombinant proteins. METHODS: Bovine fibrobllast growth factor (BbFGF) was selected as a model of simple proteins with a single disulfide bond and free cysteines. Anti-HBsAg single-chain Fv (HBscFv), an artificial multidomain protein, was selected as the model molecule of complex protein with 2 disulfide bonds. A BbFGF-producing plasmid, pJN-BbFGF, and a HBscFv producing-plasmid, pQE-HBscFv, were constructed and transformed into E(?)coli strains BL21(DE3) and M15[pREP4] respectively. At the same time, both plasmids were transformed into a reductase-deficient host strain,E(?)coli Origami(DE3). The 4 recombinant E(?)coli strains were cultured and the target proteins were purified. Solubility and bioactivity of recombinant BbFGF and HBscFv produced in different host strains were analyzed and compared respectively. RESULTS: All recombinant E(?)coli strains could efficiently produce target proteins. The level of BbFGF in BL21(DE3) was 15-23% of the total protein, and was 5-10% in Origami (DE3). In addition, 65% of the BbFGF produced in BL21(DE3) formed into inclusion body in the cytoplasm, and all the target proteins became soluble in Origami (DE3). The bioactivity of BbFGF purified from Origami(DE3) was higher than its counterpart from BL21(DE3). The ED50 of BbFGF from Origami(DE3) and BL21(DE3) was 1.6 μg/L and 2.2 μg/L, respectively. Both HBscFv formed into inclusion body in the cytoplasm of M15[pQE-HBscFv] or Origami[pQE-HBscFv]. But the supernatant of Origami [pQE-HBscFv] lysate displayed weak bioactivity and its counterpart from M15[pQE-HBscFv] did not display any bioactivity. The soluble HBscFv in Origami[pQE-HBscFv] was purified to be 1-2 mg/L and its affinity constant was determined to be 2.62×107 mol/L. The yield of native HBscFv refolded from inclusion body in M15[pQE-HBscFv] was 30-35 mg/L and the affinity constant was 1.98×107 mol/L. There was no significant difference between the bioactivity of HBscFvs refolded from the inclusion bodies produced in different host strains. CONCLUSION: Modification of the redox environment of E(?)coli cytoplasm can significantly improve the folding of recombinant disulfide-bonded proteins produced in it.