Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases.As a key feature of microstructure,the morphology of the coherent particles...Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases.As a key feature of microstructure,the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys.This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation.We found that the ferrite grain tends to grow into an elongated plate-like shape,independent of its initial confi guration.The fi nal shape of the ferrite is closely related to the misfi t between the two phases,with the longest direction and the broad facet of the plate being,respectively,consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC)method.The strain energy calculation in the framework of Eshelby’s inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable.It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51471097 and 51671111)the National Key Research and Development Program of China (Grant No. 2016YFB0701304)
文摘Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases.As a key feature of microstructure,the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys.This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation.We found that the ferrite grain tends to grow into an elongated plate-like shape,independent of its initial confi guration.The fi nal shape of the ferrite is closely related to the misfi t between the two phases,with the longest direction and the broad facet of the plate being,respectively,consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC)method.The strain energy calculation in the framework of Eshelby’s inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable.It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.