期刊文献+
共找到1,878篇文章
< 1 2 94 >
每页显示 20 50 100
Five-phase Synchronous Reluctance Machines Equipped with a Novel Type of Fractional Slot Winding
1
作者 S.M.Taghavi Araghi A.Kiyoumarsi B.Mirzaeian Dehkordi 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期264-273,共10页
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are... Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation. 展开更多
关键词 Finite element analysis Five-phase machine Fractional slot concentrated winding(FSCW) machine slot/pole combination MMF harmonics Synchronous reluctance machine winding factor
下载PDF
Calculation of torque and speed of induction machines under rotor winding faults
2
作者 马宏忠 胡虔生 +1 位作者 黄允凯 张利民 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期39-43,共5页
Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculat... Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline. 展开更多
关键词 induction machine rotor winding fault TORQUE SPEED fluctuating
下载PDF
Short-term wind speed forecasting bias correction in the Hangzhou area of China based on a machine learning model 被引量:1
3
作者 Yi Fang Yunfei Wu +4 位作者 Fengmin Wu Yan Yan Qi Liu Nian Liu Jiangjiang Xia 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第4期37-44,共8页
准确的风速预报具有重要的社会意义.在本研究中,使用名为WSFBC-XGB的XGBoost机器学习模型对中国浙江省杭州市自动气象站的短期风速预报误差进行校正.WSFBC-XGB使用本地数值天气预报系统的产品作为输入.将WSFBC-XGB校正的结果与传统MOS(... 准确的风速预报具有重要的社会意义.在本研究中,使用名为WSFBC-XGB的XGBoost机器学习模型对中国浙江省杭州市自动气象站的短期风速预报误差进行校正.WSFBC-XGB使用本地数值天气预报系统的产品作为输入.将WSFBC-XGB校正的结果与传统MOS(模型输出统计)方法校正的结果进行了比较.结果表明:WSFBC-XGB预报风速的均方根误差(RMSE)/准确率(ACC)分别比NWP和MOS降低/提高了26.1%和7.64%/35.6%和7.02%;对于90%的站点WSFBC-XGB的RMSE/ACC均小于/高于MOS.此外,采用平均杂质减少法对WSFBC-XGB的可解释性进行分析,以帮助用户增加对模型的信任.结果表明:10米风速(47.35%),10米风的经向分量(12.73%),日循环(9.97%)和1000百帕风的经向分量(7.45%)是前4个最重要的特征.WSFBC-XGB模型将有助于提高短期风速预报的准确性,为大型户外活动提供支持. 展开更多
关键词 机器学习 极端梯度提升算法 风速 后处理 平均杂质减少
下载PDF
SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management
4
作者 Ana María Peco Chacón Isaac Segovia Ramírez Fausto Pedro García Márquez 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2595-2608,共14页
Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working co... Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification. 展开更多
关键词 machine learning classification support vector machine false alarm wind turbine cross-validation
下载PDF
A data-driven machine learning approach for yaw control applications of wind farms
5
作者 Christian Santoni Zexia Zhang +1 位作者 Fotis Sotiropoulos Ali Khosronejad 《Theoretical & Applied Mechanics Letters》 CSCD 2023年第5期341-352,共12页
This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kineticenergy fields in the wake of wind turbines for yaw control applications.The model consists of an auto-enc... This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kineticenergy fields in the wake of wind turbines for yaw control applications.The model consists of an auto-encoderconvolutional neural network(ACNN)trained to extract the features of turbine wakes using instantaneous datafrom large-eddy simulation(LES).The proposed framework is demonstrated by applying it to the Sandia NationalLaboratory Scaled Wind Farm Technology facility consisting of three 225 kW turbines.LES of this site is performedfor different wind speeds and yaw angles to generate datasets for training and validating the proposed ACNN.It is shown that the ACNN accurately predicts turbine wake characteristics for cases with turbine yaw angleand wind speed that were not part of the training process.Specifically,the ACNN is shown to reproduce thewake redirection of the upstream turbine and the secondary wake steering of the downstream turbine accurately.Compared to the brute-force LES,the ACNN developed herein is shown to reduce the overall computational costrequired to obtain the steady state first and second-order statistics of the wind farm by about 85%. 展开更多
关键词 wind energy machine learning Yaw controlLarge eddy simulations Convolutional neural networks
下载PDF
Application of four machine-learning methods to predict short-horizon wind energy
6
作者 Doha Bouabdallaoui Touria Haidi +2 位作者 Faissal Elmariami Mounir Derri El Mehdi Mellouli 《Global Energy Interconnection》 EI CSCD 2023年第6期726-737,共12页
Renewable energy has garnered attention due to the need for sustainable energy sources.Wind power has emerged as an alternative that has contributed to the transition towards cleaner energy.As the importance of wind e... Renewable energy has garnered attention due to the need for sustainable energy sources.Wind power has emerged as an alternative that has contributed to the transition towards cleaner energy.As the importance of wind energy grows,it can be crucial to provide forecasts that optimize its performance potential.Artificial intelligence(AI)methods have risen in prominence due to how well they can handle complicated systems while enhancing the accuracy of prediction.This study explored the area of AI to predict wind-energy production at a wind farm in Yalova,Turkey,using four different AI approaches:support vector machines(SVMs),decision trees,adaptive neuro-fuzzy inference systems(ANFIS)and artificial neural networks(ANNs).Wind speed and direction were considered as essential input parameters,with wind energy as the target parameter,and models are thoroughly evaluated using metrics such as the mean absolute percentage error(MAPE),coefficient of determination(R~2),and mean absolute error(MAE).The findings accentuate the superior performance of the SVM,which delivered the lowest MAPE(2.42%),the highest R~2(0.95),and the lowest MAE(71.21%)compared with actual values,while ANFIS was less effective in this context.The main aim of this comparative analysis was to rank the models to move to the next step in improving the least efficient methods by combining them with optimization algorithms,such as metaheuristic algorithms. 展开更多
关键词 wind Energy Prediction Support Vector machines Decision Trees Adaptive Neuro-Fuzzy Inference Systems Artificial Neural Networks
下载PDF
Multi-model ensemble forecasting of 10-m wind speed over eastern China based on machine learning optimization
7
作者 Ting Lei Jingjing Min +3 位作者 Chao Han Chen Qi Chenxi Jin Shuanglin Li 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期95-101,共7页
风对人类活动和电力运行有重大影响,准确预报短期风速具有深远的社会和经济意义.基于中国东部100个站点,本研究首先评估了5个业务模式对10米风速的预报能力,日本气象厅JMA模式在减少预报误差方面表现最好.进一步,利用5种数值模式和多种... 风对人类活动和电力运行有重大影响,准确预报短期风速具有深远的社会和经济意义.基于中国东部100个站点,本研究首先评估了5个业务模式对10米风速的预报能力,日本气象厅JMA模式在减少预报误差方面表现最好.进一步,利用5种数值模式和多种机器学习方法,将动力和统计相结合,对每个站点分别进行了特征工程和机器学习算法优选,建立了10米风速多模式集成预报模型。针对24至96小时预报时长,将该方法的预报性能与基于岭回归的多模式集成和JMA单模式进行比较.结果表明,基于机器学习优选的多模型集成方法可以将JMA模式的预报误差降低39%以上,预报效果的提升在11月最明显.此外,该方法优于基于岭回归的多模式集成方法. 展开更多
关键词 风速 机器学习优选 集成预报 岭回归
下载PDF
Overview of the Rectangular Wire Windings AC Electrical Machine 被引量:5
8
作者 Yu Zhao Dawei Li +1 位作者 Tonghao Pei Ronghai Qu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第2期160-169,共10页
The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for so... The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected. 展开更多
关键词 AC copper losses the rectangular wire winding AC electrical machine process craft winding connection.
下载PDF
Investigation of Influence of Winding Structure on Reliability of Permanent Magnet Machines 被引量:6
9
作者 Wei Li Ming Cheng 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第2期87-95,共9页
Winding is an important part of the electrical machine and plays a key role in reliability.In this paper,the reliability of multiphase winding structure in permanent magnet machines is evaluated based on the Markov mo... Winding is an important part of the electrical machine and plays a key role in reliability.In this paper,the reliability of multiphase winding structure in permanent magnet machines is evaluated based on the Markov model.The mean time to failure is used to compare the reliability of different windings structure.The mean time to failure of multiphase winding is derived in terms of the underlying parameters.The mean time to failure of winding is affected by the number of phases,the winding failure rate,the fault-tolerant mechanism success probability,and the state transition success probability.The influence of the phase number,winding distribution types,multi three-phase structure,and fault-tolerant mechanism success probability on the winding reliability is investigated.The results of reliability analysis lay the foundation for the reliability design of permanent magnet machines. 展开更多
关键词 phase number winding distribution Markov model RELIABILITY mean time to failure permanent magnet machine
下载PDF
Development of Special Winding Machine for HT-7U Superconducting Tokamak 被引量:1
10
作者 高大明 郁杰 +6 位作者 朱文华 文军 潘引年 程乐平 陶玉明 王海京 何卫 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第1期133-140,共8页
A special winding machine with high accuracy has just been developed and applied to the construction of HT-7U Tokamak. It is one of the critical facilities for R & D of HT-7U construction. The machine mainly consi... A special winding machine with high accuracy has just been developed and applied to the construction of HT-7U Tokamak. It is one of the critical facilities for R & D of HT-7U construction. The machine mainly consists of five parts, including a CICC pay-off spool, a fourroller correcting assembly, a four-roller forming/bending assembly, a continuous winding structure and a CNC control system with three-axis AC servo motors. The facility is used for Cable in Conduit Conductor (CICC) magnet fabrication of HT-7U. The main requirements of the winding machine are: continuous winding to reduce joints inside the coils; pre-forming CICC conductor to avoid winding with tension; suitable for all TF & PF coils of various coil shapes and within the dimension limit; improving the configuration tolerance and the special flatness of the CICC conductor. This paper emphasizes on the design and fabrication of the special winding machine for HT-7U. Some analyses and techniques in winding process for trial D-shape coil are also presented. 展开更多
关键词 Development of Special winding machine for HT-7U Superconducting Tokamak HT
下载PDF
Intelligent Winding Machine of Plastic Films for Preventing Both Wrinkles and Slippages 被引量:1
11
作者 Hiromu Hashimoto 《Modern Mechanical Engineering》 2016年第1期20-31,共12页
Flexible continuous plastic films are used to produce various products, including optical films and packaging materials, because plastic film is suited to use in mass production manufacturing processes. Generally, the... Flexible continuous plastic films are used to produce various products, including optical films and packaging materials, because plastic film is suited to use in mass production manufacturing processes. Generally, the web handling process is applied to convey the plastic film, which is ultimately rewound into a roll using a rewinder. In this case, wrinkles, slippage and other defects may occur if the rewinding conditions are inadequate. In this paper, the authors explain the development of a rewinder system that prevents wound roll defects—primarily starring and telescoping. The system is able to prevent such defects by optimizing the rewinding conditions of tension and nip-load. Based on the optimum design technique, the tension and nip-load are calculated using a 32-bit personal computer. Our experiments have also empirically shown that this rewinder system can prevent roll defects when applying optimized tension and nip-load. Additionally, inexperienced operators can control this system easily. 展开更多
关键词 winding machine MECHANICS Tension Control OPTIMIZATION
下载PDF
Recent Development of Reluctance Machines with Different Winding Configurations,Excitation Methods,and Machine Structures 被引量:1
12
作者 X.Y.Ma G.J.Li +1 位作者 G.W.Jewell Z.Q.Zhu 《CES Transactions on Electrical Machines and Systems》 2018年第1期82-92,共11页
This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double la... This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double layer conventional(DLC-),double layer mutually-coupled(DLMC),single layer conventional(SLC-),and single layer mutually-coupled(SLMC-),as well as fully-pitched(FP)winding configurations have been considered for both rectangular wave and sinewave excitations.Different conduction angles such as unipolar􀫚120°elec.,unipolar/bipolar􀫚180°elec.,bipolar􀫛240°elec.and bipolar􀫜360°elec.have been adopted and the most appropriate conduction angles have been obtained for the SRMs with different winding configurations.In addition,with appropriate conduction angles,the 12-slot/14-pole SRMs with modular stator structure is found to produce similar average torque,but lower torque ripple and iron loss when compared to non-modular 12-slot/8-pole SRMs.With sinewave excitation,the doubly salient synchronous reluctance machines with the DLMC winding can produce the highest average torque at high currents and achieve the highest peak efficiency as well.In order to compare with the conventional synchronous reluctance machines(SynRMs)having flux barriers inside the rotor,the appropriate rotor topologies to obtain the maximum average torque have been investigated for different winding configurations and slot/pole number combinations.Furthermore,some prototypes have been built with different winding configurations,stator structures,and slot/pole combinations to validate the predictions. 展开更多
关键词 Double/single layer windings excitation methods fully/short-pitched mutually coupled modular machines switched/synchronous reluctance machines
下载PDF
A 2-DOF Model and Dynamic Analysis of Textile Filament Winding Machines with Sprung Feeler Rollers 被引量:1
13
作者 Suleiman E. Al-Lubani Abdullah F. Al-Dwairi Omar M. AI-Araidah 《材料科学与工程(中英文A版)》 2012年第5期430-435,共6页
关键词 纤维缠绕机 动态模型 纺织 弹簧 压路机 描述系统 振动分析 动态稳定性
下载PDF
Inductances Estimation in the d-q Axis for an Interior Permanent-Magnet Synchronous Machines with Distributed Windings
14
作者 Abdessamed Soualmi Frederic Dubas +2 位作者 Daniel Depemet Andry Randrai Christophe Espanet 《Journal of Energy and Power Engineering》 2013年第6期1178-1185,共8页
The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque an... The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque and field weakening capability but also to design the control system to maximize performance and power factor. This paper presents a study of inductance in the d-q axis for buried (i.e., IPMSM (interior) PM Synchronous Machines). This study is achieved using 2-D (two-dimensional) FEM (finite-element method) and Park's transformation. 展开更多
关键词 Interior PM synchronous machine distributed winding d-q inductances Park's transformation reluctance torque cross-saturation.
下载PDF
Design of Online Vision Detection System for Stator Winding Coil
15
作者 李艳 李芮 徐洋 《Journal of Donghua University(English Edition)》 CAS 2023年第6期639-648,共10页
The quality of the stator winding coil directly affects the performance of the motor.A dual-camera online machine vision detection method to detect whether the coil leads and winding regions were qualified was designe... The quality of the stator winding coil directly affects the performance of the motor.A dual-camera online machine vision detection method to detect whether the coil leads and winding regions were qualified was designed.A vision detection platform was designed to capture individual winding images,and an image processing algorithm was used for image pre-processing,template matching and positioning of the coil lead area to set up a coordinate system.After eliminating image noise by Blob analysis,the improved Canny algorithm was used to detect the location of the coil lead paint stripped region,and the time was reduced by about half compared to the Canny algorithm.The coil winding region was trained with the ShuffleNet V2-YOLOv5s model for the dataset,and the detect file was converted to the Open Neural Network Exchange(ONNX)model for the detection of winding cross features with an average accuracy of 99.0%.The software interface of the detection system was designed to perform qualified discrimination tests on the workpieces,and the detection data were recorded and statistically analyzed.The results showed that the stator winding coil qualified discrimination accuracy reached 96.2%,and the average detection time of a single workpiece was about 300 ms,while YOLOv5s took less than 30 ms. 展开更多
关键词 machine vision online detection V2-YOLOv5s model Canny algorithm stator winding coil
下载PDF
Design of a 35 kV high-temperature superconducting synchronous machine with optimized field winding
16
作者 Chao LUO Bowen XU +3 位作者 Jien MA Jiancheng ZHANG Jiabo SHOU Youtong FANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第9期687-700,共14页
This paper proposes the application of high-voltage stator-cable windings in superconducting machines,based on the characteristics of strong magnetic fields and large air gaps.Cross-linked polyethylene cable winding c... This paper proposes the application of high-voltage stator-cable windings in superconducting machines,based on the characteristics of strong magnetic fields and large air gaps.Cross-linked polyethylene cable winding can be employed to achieve a rated voltage of 35 kV in direct-current(DC)-field superconducting machines,thereby enabling a direct connection between the superconducting machine and the power grid,eliminating the need for transformers.We first,through finite element analysis,demonstrate that the proposed high-voltage high-temperature superconducting machine not only meets the requirement of a 35 kV-rated voltage,but also exhibits minimal flux leakage,torque fluctuation,and harmonic distortion.We then compare three candidate types to discuss the tradeoff between the multi-group superconducting field winding arrangement and machine performances.We propose inverted trapezoidal superconducting field winding as a promising candidate,because it has minimal superconductivity material usage,the largest safety margin for the superconducting coils(SCs),low thrust ripple,and low total harmonic distortion with the desired 35 kV-rated voltage.Finally,through large-scale design parameter sweeping,we show how we selected the optimal parameters for field winding and validated them by the finite element method. 展开更多
关键词 High-voltage stator-cable windings Superconducting machines Inverted trapezoidal field winding Total harmonic distortion
原文传递
A call for enhanced data-driven insights into wind energy flow physics
17
作者 Coleman Moss Romit Maulik Giacomo Valerio Iungo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期6-10,共5页
With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning ... With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning the interaction between the atmospheric boundary layer and wind turbine arrays,the generated wakes and their interactions,and wind energy harvesting.However,the majority of the existing ML models for predicting wind turbine wakes merely recreate Computational fluid dynamics(CFD)simulated data with analogous accuracy but reduced computational costs,thus providing surrogate models rather than enhanced data-enabled physics insights.Although ML-based surrogate models are useful to overcome current limitations associated with the high computational costs of CFD models,using ML to unveil processes from experimental data or enhance modeling capabilities is deemed a potential research direction to pursue.In this letter,we discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations,along with new promising research strategies. 展开更多
关键词 machine learning WAKE wind turbine wind farm Supervisory control and data acquisition
下载PDF
A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting
18
作者 Farhan Ullah Xuexia Zhang +2 位作者 Mansoor Khan Muhammad Abid Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2024年第5期3373-3395,共23页
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article... Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions. 展开更多
关键词 Ensemble learning machine learning real-time data analysis stakeholder analysis temporal convolutional network wind power forecasting
下载PDF
Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis
19
作者 Jing Gao Mingxuan Ji +1 位作者 Hongjiang Wang Zhongxiao Du 《Computers, Materials & Continua》 SCIE EI 2024年第6期5017-5030,共14页
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m... With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method. 展开更多
关键词 Short-term wind power prediction deep hybrid kernel extreme learning machine incremental learning error clustering
下载PDF
Meshless Surface Wind Speed Field Reconstruction Based on Machine Learning
20
作者 Nian LIU Zhongwei YAN +6 位作者 Xuan TONG Jiang JIANG Haochen LI Jiangjiang XIA Xiao LOU Rui REN Yi FANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第10期1721-1733,共13页
We propose a novel machine learning approach to reconstruct meshless surface wind speed fields,i.e.,to reconstruct the surface wind speed at any location,based on meteorological background fields and geographical info... We propose a novel machine learning approach to reconstruct meshless surface wind speed fields,i.e.,to reconstruct the surface wind speed at any location,based on meteorological background fields and geographical information.The random forest method is selected to develop the machine learning data reconstruction model(MLDRM-RF)for wind speeds over Beijing from 2015-19.We use temporal,geospatial attribute and meteorological background field features as inputs.The wind speed field can be reconstructed at any station in the region not used in the training process to cross-validate model performance.The evaluation considers the spatial distribution of and seasonal variations in the root mean squared error(RMSE)of the reconstructed wind speed field across Beijing.The average RMSE is 1.09 m s^(−1),considerably smaller than the result(1.29 m s^(−1))obtained with inverse distance weighting(IDW)interpolation.Finally,we extract the important feature permutations by the method of mean decrease in impurity(MDI)and discuss the reasonableness of the model prediction results.MLDRM-RF is a reasonable approach with excellent potential for the improved reconstruction of historical surface wind speed fields with arbitrary grid resolutions.Such a model is needed in many wind applications,such as wind energy and aviation safety assessments. 展开更多
关键词 data reconstruction MESHLESS machine learning surface wind speed random forest
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部