期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
PREDICTION TECHNIQUES OF CHAOTIC TIME SERIES AND ITS APPLICATIONS AT LOW NOISE LEVEL 被引量:1
1
作者 马军海 王志强 陈予恕 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第1期7-14,共8页
The paper not only studies the noise reduction methods of chaotic time series with noise and its reconstruction techniques, but also discusses prediction techniques of chaotic time series and its applications based on... The paper not only studies the noise reduction methods of chaotic time series with noise and its reconstruction techniques, but also discusses prediction techniques of chaotic time series and its applications based on chaotic data noise reduction. In the paper, we first decompose the phase space of chaotic time series to range space and null noise space. Secondly we restructure original chaotic time series in range space. Lastly on the basis of the above, we establish order of the nonlinear model and make use of the nonlinear model to predict some research. The result indicates that the nonlinear model has very strong ability of approximation function, and Chaos predict method has certain tutorial significance to the practical problems. 展开更多
关键词 chaotic time series noise reduction essential characteristic extraction nonlinear model predict technology
下载PDF
Towards a Unified Recurrent Neural Network Theory: The Uniformly Pseudo-Projection-Anti-Monotone Net 被引量:1
2
作者 Zong Ben XU Chen QIAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第2期377-396,共20页
In the past decades, various neural network models have been developed for modeling the behavior of human brain or performing problem-solving through simulating the behavior of human brain. The recurrent neural networ... In the past decades, various neural network models have been developed for modeling the behavior of human brain or performing problem-solving through simulating the behavior of human brain. The recurrent neural networks are the type of neural networks to model or simulate associative memory behavior of human being. A recurrent neural network (RNN) can be generally formalized as a dynamic system associated with two fundamental operators: one is the nonlinear activation operator deduced from the input-output properties of the involved neurons, and the other is the synaptic connections (a matrix) among the neurons. Through carefully examining properties of various activation functions used, we introduce a novel type of monotone operators, the uniformly pseudo-projectionanti-monotone (UPPAM) operators, to unify the various RNN models appeared in the literature. We develop a unified encoding and stability theory for the UPPAM network model when the time is discrete. The established model and theory not only unify but also jointly generalize the most known results of RNNs. The approach has lunched a visible step towards establishment of a unified mathematical theory of recurrent neural networks. 展开更多
关键词 Feedback neural networks essential characteristics uniformly pseudo-projection-anti- monotone net unified theory dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部