期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Breast Cancer MCF-7 Cell Spheroid Culture for Drug Discovery and Development 被引量:1
1
作者 Guangping Chen William Liu Bingfang Yan 《Journal of Cancer Therapy》 2022年第3期117-130,共14页
In vitro 3D cancer spheroids (tumoroids) exhibit a drug resistance profile similar to that found in solid tumors. 3D spheroid culture methods recreate more physiologically relevant microenvironments for cells. Therefo... In vitro 3D cancer spheroids (tumoroids) exhibit a drug resistance profile similar to that found in solid tumors. 3D spheroid culture methods recreate more physiologically relevant microenvironments for cells. Therefore, these models are more appropriate for cancer drug screening. We have recently developed a protocol for MCF-7 cell spheroid culture, and used this method to test the effects of different types of drugs on this estrogen-dependent breast cancer cell spheroid. Our results demonstrated that MCF-7 cells can grow spheroid in medium using a low attachment plate. We managed to grow one spheroid in each well, and the spheroid can grow over a month, the size of the spheroid can grow over a hundred times in volume. Our targeted drug experimental results suggest that estrogen sulfotransferase, steroid sulfatase, and G protein-coupled estrogen receptor may play critical roles in MCF-7 cell spheroid growth, while estrogen receptors α and β may not play an essential role in MCF-7 spheroid growth. Organoids are the miniatures of in vivo tissues and reiterate the in vivo microenvironment of a specific organ, best fit for the in vitro studies of diseases and drug development. Tumoroid, developed from cancer cell lines or patients’ tumor tissue, is the best in vitro model of in vivo tumors. 3D spheroid technology will be the best future method for drug development of cancers and other diseases. Our reported method can be developed clinically to develop personalized drugs when the patient’s tumor tissues are used to develop a spheroid culture for drug screening. 展开更多
关键词 MCF-7 Cell Spheroid Culture 3D Cell Culture estrogen-dependent Breast Cancer Cancer Drug Development Personalized Cancer Drug Development
下载PDF
Crystal Structures of Human 17<i>β</i>-Hydroxysteroid Dehydrogenase Type 1 Complexed with the Dual-Site Inhibitor EM-139
2
作者 Tang Li Daowei Zhu +1 位作者 Fernand Labrie Shengxiang Lin 《Health》 2018年第8期1079-1089,共11页
Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the biosynthesis of the most potent natural estrogen 17β-estradiol (E2) from estrone (E1) in the ovary and peripheral tissues, playing a pivotal ro... Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the biosynthesis of the most potent natural estrogen 17β-estradiol (E2) from estrone (E1) in the ovary and peripheral tissues, playing a pivotal role in the progression of estrogen-dependent diseases. N-n-Butyl-N-methyl-ll-(16'α-chloro-3',17'β-dihydroxyestra-1',3',5'(10')-trien-7'α-yl)undecanamide (EM-139) was previously described as a dual-site inhibitor that can inhibit 17β-HSD1 transforming E1 into E2 and also inhibit estrogen receptor. In the present report, we describe the co-crystallization of EM-139 with 17β-HSD1 as well as the analysis of the three-dimensional structure of the enzyme/inhibitor complex. The crystal is grown under similar condition as native crystals, whereas the space group is changed to I121 never observed in other 17β-HSD1 crystals before. The steroidal moiety of the bound EM-139 molecule has shown a binding pattern similar to E2 in the E2 binary complex. The O-3 of the inhibitor develops hydrogen bonds with residues His221 and Glu282, whereas the O-17 makes hydrogen bonds with Ser142 and Tyr155. The bulky 7α-alkyl moiety of the inhibitor, which is essential for its anti-estrogenic activity but cannot be defined in the electron density, may compromise the inhibitory effect of EM-139 to 17β-HSD1. Moreover, the 16α-Cl atom shows no obvious interaction with surrounding residues. The atomic level understanding of the inhibitory mechanism of EM-139 provides important information for the inhibitor design of 17β-HSD1, which will facilitate future development of more potent and selective inhibitors of the enzyme for therapeutic purposes. 展开更多
关键词 17β-HSD1 INHIBITOR Complex Structure estrogen-dependent Diseases
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部