Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area o...Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area of 99.03 m2/g with a pore size of 7.8 nm. Scanning electron microscopy (SEM) and particle size distribution reveal that the diameters of the formed pellets are uniform. Thermogravimetry (TG) analysis result shows that 500 ℃ could be the appropriate temperature for converting Ni(HCO3)2 precursors into NiO via a thermal decomposition process. CO2 and NH3 temperature-programmed desorption results show that Ni(HCO3)2 has explicit acid-base sites. Transmission electron microscopy (TEM) results vividly indicate that the pellets are aggregated by hexagonal platelets and possess porous structures. Ni(HCO3)2 can efficiently catalyze the one-step synthesis of benzoin ethyl ether from benzaldehyde and ethanol, with the conversion ofbenzaldehyde up to 57.5% and nearly 100% selectivity of benzoin ethyl ether.展开更多
Nano-NiO and bulk NiO were prepared from Ni(AC)_2·4 H_2O by coordination precipitation using aqueous ammonia and by a solid state reaction, respectively. The nickel oxide particles were characterized by X-ray Dif...Nano-NiO and bulk NiO were prepared from Ni(AC)_2·4 H_2O by coordination precipitation using aqueous ammonia and by a solid state reaction, respectively. The nickel oxide particles were characterized by X-ray Diffraction(XRD) and scanning electron microscopy(SEM). The results indicate that nano-sized NiO has a crystal phase with a standard face-centered cubic lattice structure, with a mean particle diameter of about 10 nm. The evaluation of the activity of nickel oxide nanoparticles in the catalytic hydrogenation of 7-methoxy-1-naphthylacetonitrile was carried out. The results demonstrate the efficient synthesis of the title compound by a one-pot catalytic hydrogenation and acetylation with NiO. The NiO nanoparticles displayed superior catalytic activity in the synthesis of agomelatine in the one-pot reaction.The total yield of agomelatine is over 81.8% with a purity of 99.2%, as determined by HPLC. The structure of agomelatine was confirmed by IR, MS, and 1 H NMR analysis.展开更多
Synthesis and electrochemical polymerization of 9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene (EO-F) into poly[9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene] (EO-PF) films are reported....Synthesis and electrochemical polymerization of 9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene (EO-F) into poly[9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene] (EO-PF) films are reported. The boron trifluoride diethyl etherate electrolyte enables facile preparation of EO-PF films at lower potential compared to LiCIOa/MeCN and the electrochemical polymerizations are discussed. The EO-PF shows good electrochemical behavior and can be dissolved in solvents such as DMSO and THF. The solubility of EO-PF in THF is 2 mg.mL-1 and the number average molecular weight is 35300 with a polydispersity index of 1.65. The side chains on C9 position of the monomer maintain unchanged aRer electrooxidation into corresponding polymer. The EO-PF dissolved in THF under 365 nm ultraviolet light is sky blue light emitting with the Commission Internationale de L'Eclairage-CIE coordinates of (0.19, 0.15). The electropolymerized EO-PF is used for the first time in chemosensing metal ions, demonstrating fluorescence quenching for Mn2+ and Fe3+ while fluorescence enhancement for Cr6+ ions.展开更多
基金Project(50872086)supported by the National Natural Science Foundation of ChinaProject(2012021006-3)supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(2012L022)supported by Special/Youth Foundation of Taiyuan University of Technology,ChinaProject(20120321033-02)supported by Science and Technology Research of Shanxi Province,China
文摘Ni(HCO3)2 with unique phase and high crystallinity was synthesized with urea hydrolysis. The as-prepared samples were well characterized in detail. N2 adsorption and desorption result manifests a high surface area of 99.03 m2/g with a pore size of 7.8 nm. Scanning electron microscopy (SEM) and particle size distribution reveal that the diameters of the formed pellets are uniform. Thermogravimetry (TG) analysis result shows that 500 ℃ could be the appropriate temperature for converting Ni(HCO3)2 precursors into NiO via a thermal decomposition process. CO2 and NH3 temperature-programmed desorption results show that Ni(HCO3)2 has explicit acid-base sites. Transmission electron microscopy (TEM) results vividly indicate that the pellets are aggregated by hexagonal platelets and possess porous structures. Ni(HCO3)2 can efficiently catalyze the one-step synthesis of benzoin ethyl ether from benzaldehyde and ethanol, with the conversion ofbenzaldehyde up to 57.5% and nearly 100% selectivity of benzoin ethyl ether.
基金Funded by the Natural Science Foundation of Hubei Province(2017CFB680)the Hubei University of Science and Technology Nuclear Technology Special Project(2018-19KZ06)+1 种基金the Open Fund of the State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)of China(G201703)the Key Laboratory of Measurement and Control System for Offshore Environment,Fuqing Branch of Fujian Normal University,Fujian Province University(S1-KF1604)
文摘Nano-NiO and bulk NiO were prepared from Ni(AC)_2·4 H_2O by coordination precipitation using aqueous ammonia and by a solid state reaction, respectively. The nickel oxide particles were characterized by X-ray Diffraction(XRD) and scanning electron microscopy(SEM). The results indicate that nano-sized NiO has a crystal phase with a standard face-centered cubic lattice structure, with a mean particle diameter of about 10 nm. The evaluation of the activity of nickel oxide nanoparticles in the catalytic hydrogenation of 7-methoxy-1-naphthylacetonitrile was carried out. The results demonstrate the efficient synthesis of the title compound by a one-pot catalytic hydrogenation and acetylation with NiO. The NiO nanoparticles displayed superior catalytic activity in the synthesis of agomelatine in the one-pot reaction.The total yield of agomelatine is over 81.8% with a purity of 99.2%, as determined by HPLC. The structure of agomelatine was confirmed by IR, MS, and 1 H NMR analysis.
基金financially supported by the National Natural Science Foundation of China(Nos.50903078,21274134)New Century Excellent Talents in Universities(No.NCET-11-0473)
文摘Synthesis and electrochemical polymerization of 9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene (EO-F) into poly[9,9-bis(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-fluorene] (EO-PF) films are reported. The boron trifluoride diethyl etherate electrolyte enables facile preparation of EO-PF films at lower potential compared to LiCIOa/MeCN and the electrochemical polymerizations are discussed. The EO-PF shows good electrochemical behavior and can be dissolved in solvents such as DMSO and THF. The solubility of EO-PF in THF is 2 mg.mL-1 and the number average molecular weight is 35300 with a polydispersity index of 1.65. The side chains on C9 position of the monomer maintain unchanged aRer electrooxidation into corresponding polymer. The EO-PF dissolved in THF under 365 nm ultraviolet light is sky blue light emitting with the Commission Internationale de L'Eclairage-CIE coordinates of (0.19, 0.15). The electropolymerized EO-PF is used for the first time in chemosensing metal ions, demonstrating fluorescence quenching for Mn2+ and Fe3+ while fluorescence enhancement for Cr6+ ions.