Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes i...Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.展开更多
The present research investigates the influence of sheath solvent’s flow rate on the quality of electrospun ethyl cellulose (EC) nanofibers using a modified coaxial process. With 24 w/v % EC in ethanol as electrospin...The present research investigates the influence of sheath solvent’s flow rate on the quality of electrospun ethyl cellulose (EC) nanofibers using a modified coaxial process. With 24 w/v % EC in ethanol as electrospinnable core fluid and ethanol as sheath fluid, EC nanofibers generated under different sheath flow rates were generated from the modified processes. FESEM observations demonstrate that the modified process is effective in preventing the clogging of spinneret for a smooth electrospinning. The key for the modified coaxial process is the reasonable selection of a sheath flow rate matching the drawing process of core EC fluid during the electrpospinning. The EC nanofibers’ diameters (D, nm) could be manipulated through the sheath-to-core flow rate ratio (f) as D = 819-1651f (R= 0.9754) within a suitable range of 0 to 0.25. The present paper provides useful data for the implementation of the modified coaxial process controllably to obtain polymer nanofibers with high quality.展开更多
An equipment test and sensory evaluation were conducted to identify the compatibility and sensory characteristics of HEC in facial masks. These results were then compared to xanthan gum usage. The equipment test resul...An equipment test and sensory evaluation were conducted to identify the compatibility and sensory characteristics of HEC in facial masks. These results were then compared to xanthan gum usage. The equipment test results showed that HEC promoted proper tensile capacity in masks which are made from strong structured fabrics such as medium thick, thick and cross woven & homogenous thin mask fabrics. HEC was found to be more compatible with mask fabrics than xanthan gum. HEC improved mask softness and dampness and had an improved water binding and water retention ability compared to xanthan gum. The split face sensory evaluation results demonstrated that sheet masks containing HEC had improved adhesion and lubricity, provided more moisture to the skin, better elasticity and gloss after use and took longer to dry out. Overall, the panel preferred facial masks which contain HEC.展开更多
In the ethyl-cyanoethylcellulose ((E-CE)C)/dichloroacetic acid (DCA) cholesteric liquid crystalline solution, the hand-like texture is formed when the mesophase aggregates with the disk-like texture grow to big enough...In the ethyl-cyanoethylcellulose ((E-CE)C)/dichloroacetic acid (DCA) cholesteric liquid crystalline solution, the hand-like texture is formed when the mesophase aggregates with the disk-like texture grow to big enough and merge with each other with increasing concentration. The band-like texture is composed of parallel equidistant bright and dark alternative strips which are about 0.2-2.0 μm in width. In the band-like texture, the layers of ordered polymer chains are perpendicular to the solution film and the axes of helicoids are parallel to it. The width of the strips is different in different zones. Under the effect of an external magnetic field, the strips in the band-like texture first become wider and then narrower gradually.Moreover, the axes of helicoids in the (E-CE) C/DCA mesomorphic solution change from the direction normal to the magnetic field to the agreement with the magnetic field direction.展开更多
The high performance liquid chromatography method (HPLC) with ethyl cellulose/cellulose acetate (EC/CA) blends and EC as column packing material, and small molecular weight compound as probe molecules was employed to ...The high performance liquid chromatography method (HPLC) with ethyl cellulose/cellulose acetate (EC/CA) blends and EC as column packing material, and small molecular weight compound as probe molecules was employed to measure the retention volume (VR) and equilibrium distribution coefficient (K) of both inorganic and organic solutes. The interfacial separation properties of EC/CA blends were characterized by the HPLC data. The effects of the blends on the interfacial adsorption properties, hydrophilicity, affinity, polar and non-polar parameters of EC membrane materials were studied subsequently. The research results indicate that the interfacial adsorption properties and hydrophilicity of EC have been improved by solution blending with CA. The alloys are superior to EC in the separation efficiency for non-dissociable polar organic solute. The EC/CA alloy (80:20, ω) is suitable for desalting and desaccharifying.展开更多
Critical concentrations of lyotropic liquid crystalline ethylcellulose in more than ten solvents were determined using both Abbe refractometer and polarized microscopy. Critical concentration C-crit of forming Liquid ...Critical concentrations of lyotropic liquid crystalline ethylcellulose in more than ten solvents were determined using both Abbe refractometer and polarized microscopy. Critical concentration C-crit of forming Liquid crystal phase decreased with increasing solubility parameter delta of solvent until approaching the delta of polymer. Although the alcohols used as solvents had the same variation rule, the critical concentration values of their solutions were much higher, due to their excessive large hydrogen bond component of delta. The experiments of using mixed solvents which showed good linear relation between C-crit and delta also proved this rule. A technique of Transmission Optical Analysis was first used to estimate the concentration dependence of critical phase transition temperature T-crit of EC, and a T-C phase diagram could be drawn.展开更多
Ethyl cellulose (EC), taken as a thermotropic liquid crystalline polymer, was blended with polypropylene (PP), followed by injection molding. Fibre-forming of EC in the PP matrix is analyzed,based on the rheological d...Ethyl cellulose (EC), taken as a thermotropic liquid crystalline polymer, was blended with polypropylene (PP), followed by injection molding. Fibre-forming of EC in the PP matrix is analyzed,based on the rheological data,dynamic mechanical analysis and fracture micrographs of EC/PP blends. The addition of maleated PP, for the modification of the interphasial interaction between the PP matrix and the EC fibrils, did not impair the fiber formation substantially.展开更多
Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperature...Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents.展开更多
The present study investigates the preparation of sustained release drug-loaded nanofibers using a novel epoxy-coated spinneret. With ethyl cellulose (EC) and ketoprofen (KET) as the filament-forming matrix and the ac...The present study investigates the preparation of sustained release drug-loaded nanofibers using a novel epoxy-coated spinneret. With ethyl cellulose (EC) and ketoprofen (KET) as the filament-forming matrix and the active pharmaceutical ingredient, Drug-loaded composite nanofibers are generated smoothly and continuously with few user interventions. Field-emission scanning electron microscopic observations demonstrated that the composite nanofibers prepared using the epoxy-coated spinneret have better quality than those from a traditional stainless steel spinneret in terms of diameter and its distribution. Both of the composite nanofibers are in essential a molecular solid dispersion of EC and KET based on the hydrogen bonding between them, as verified by XRD and ATR-FTIR results. In vitro dissolution tests show that the nanofibers resulted from the new spinneret provide a finer sustained KET release profile than their counter-parts. Epoxy-coated spinneret is a useful tool to facilitate the electrospinning process through the prevention of clogging for generating high quality nanofibers.展开更多
There was phase separation between the anisotropic and isotropic phases in the ethyl-acetyl cellulose/dichloroacetic acid cholesteric liquid crystalline solutions .The textures of mesophase varied with the concentrati...There was phase separation between the anisotropic and isotropic phases in the ethyl-acetyl cellulose/dichloroacetic acid cholesteric liquid crystalline solutions .The textures of mesophase varied with the concentration. The mesophases could form the disc-like texture, oily streaks texture and texture of domains gathered randomly. In the first two textures the layers of the ordered molecular chain were perpendicular to the slide surface and the axes of the helical structure were parallel to the slide surface.展开更多
Sugarcane bagasse(SCB)is an important by-product in the sugar industry.It is a source of cellulose fibers or cellulose for paper mills and textiles factories.In this study,SCB was ethyl etherified in tetrahydrofuran(T...Sugarcane bagasse(SCB)is an important by-product in the sugar industry.It is a source of cellulose fibers or cellulose for paper mills and textiles factories.In this study,SCB was ethyl etherified in tetrahydrofuran(THF)after alkali pretreatment.The alkali concentration for the pretreatment,the ratio of ethyl bromide(EtBr)to dried SCB in the reaction,reaction time,and temperature were investigated for the etherification of SCB.The ethoxyl content and characterization of the product were determined using headspace gas chromatography(HS-GC),Fourier Transform Infrared(FT-IR)and 13C-NMR spectroscopy,respectively.It was found that SCB was well-etherified with EtBr in alkali-THF.Upon ethylation of SCB,the ethoxyl content of the product was high when the alkali concentration and the ratio of EtBr to dried SCB were controlled from 50%to 75%and 4:1(V/w)to 6:1(V/w),respectively.The reaction occurred optimally when the temperature was controlled below 110℃;above this temperature,the degree of etherification decreased.The thermal stability of ethylated SCB was higher than that of SCB but slightly lower than that of commercial ethyl cellulose.Ethylated SCB has the potential to form composites with many materials because it is soluble in a wide variety of solvents.展开更多
Analytical difficulties encountered in the determination of ethyl carbamate, a known cancinogen, in a wide variety of wines and spirits have been overcome by spe- cific, sensitive GC/GC and CC/CC/MS methods with a rel...Analytical difficulties encountered in the determination of ethyl carbamate, a known cancinogen, in a wide variety of wines and spirits have been overcome by spe- cific, sensitive GC/GC and CC/CC/MS methods with a relatively shorter extraction procedure. The lowest detection limits were estimated to be 0. 1 and 0. 01μg/L for GC/GC and GC/GC/MS respectively. The RSD of the GC/GC method was 2. 5%.展开更多
分析10%乙羧氟草醚EC对大豆田阔叶杂草的防除效果和最佳使用剂量,对其进行了田间药效试验。结果表明,10%乙羧氟草醚EC 300~1 200 m L/hm2处理,药后40 d对大豆田阔叶杂草的株防效达91.49%~99.87%,鲜重防效达95.65%~99.94%,可较好地控制...分析10%乙羧氟草醚EC对大豆田阔叶杂草的防除效果和最佳使用剂量,对其进行了田间药效试验。结果表明,10%乙羧氟草醚EC 300~1 200 m L/hm2处理,药后40 d对大豆田阔叶杂草的株防效达91.49%~99.87%,鲜重防效达95.65%~99.94%,可较好地控制大豆田野苋菜、马齿苋的为害,在杂草3~5叶期使用,用量以600~900 m L/hm2为宜。展开更多
Ethyl cellulose(EC)/cellulose acetate(CA) blends were prepared by solution blending. The (thermal) stability of the blends was observed by TG, and the compatibility of them was also studied by visco-(metry), refractiv...Ethyl cellulose(EC)/cellulose acetate(CA) blends were prepared by solution blending. The (thermal) stability of the blends was observed by TG, and the compatibility of them was also studied by visco-(metry), refractive index, DSC and IR. The results show that the (refractive) index or the trait vicidity of the EC/CA solution is linearly dependent on the mass composition of the blend. At 50 and 0.01 g/mL concentration, EC and CA are almost completely miscible. A single T_g was observed for a series of blends, which was in between the T_g of pure EC and that of pure CA. The decomposition temperature of the EC/CA blend decreased with the increase of EC mass fraction in the blends. These results indicate that there is good compatibility (between) EC and CA, and the thermal stability of the blends is improved compared to that of pure EC.展开更多
基金supported by Jiangsu Province Biomass Energy and Materials Laboratory,China(Grant No.JSBEM-S-202007).
文摘Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.
文摘The present research investigates the influence of sheath solvent’s flow rate on the quality of electrospun ethyl cellulose (EC) nanofibers using a modified coaxial process. With 24 w/v % EC in ethanol as electrospinnable core fluid and ethanol as sheath fluid, EC nanofibers generated under different sheath flow rates were generated from the modified processes. FESEM observations demonstrate that the modified process is effective in preventing the clogging of spinneret for a smooth electrospinning. The key for the modified coaxial process is the reasonable selection of a sheath flow rate matching the drawing process of core EC fluid during the electrpospinning. The EC nanofibers’ diameters (D, nm) could be manipulated through the sheath-to-core flow rate ratio (f) as D = 819-1651f (R= 0.9754) within a suitable range of 0 to 0.25. The present paper provides useful data for the implementation of the modified coaxial process controllably to obtain polymer nanofibers with high quality.
文摘An equipment test and sensory evaluation were conducted to identify the compatibility and sensory characteristics of HEC in facial masks. These results were then compared to xanthan gum usage. The equipment test results showed that HEC promoted proper tensile capacity in masks which are made from strong structured fabrics such as medium thick, thick and cross woven & homogenous thin mask fabrics. HEC was found to be more compatible with mask fabrics than xanthan gum. HEC improved mask softness and dampness and had an improved water binding and water retention ability compared to xanthan gum. The split face sensory evaluation results demonstrated that sheet masks containing HEC had improved adhesion and lubricity, provided more moisture to the skin, better elasticity and gloss after use and took longer to dry out. Overall, the panel preferred facial masks which contain HEC.
基金This work was supported by Academia Sinica Selected Research Program.
文摘In the ethyl-cyanoethylcellulose ((E-CE)C)/dichloroacetic acid (DCA) cholesteric liquid crystalline solution, the hand-like texture is formed when the mesophase aggregates with the disk-like texture grow to big enough and merge with each other with increasing concentration. The band-like texture is composed of parallel equidistant bright and dark alternative strips which are about 0.2-2.0 μm in width. In the band-like texture, the layers of ordered polymer chains are perpendicular to the solution film and the axes of helicoids are parallel to it. The width of the strips is different in different zones. Under the effect of an external magnetic field, the strips in the band-like texture first become wider and then narrower gradually.Moreover, the axes of helicoids in the (E-CE) C/DCA mesomorphic solution change from the direction normal to the magnetic field to the agreement with the magnetic field direction.
基金Supported by Key Scientific Research Projects of Anhui Province (No 05021026)
文摘The high performance liquid chromatography method (HPLC) with ethyl cellulose/cellulose acetate (EC/CA) blends and EC as column packing material, and small molecular weight compound as probe molecules was employed to measure the retention volume (VR) and equilibrium distribution coefficient (K) of both inorganic and organic solutes. The interfacial separation properties of EC/CA blends were characterized by the HPLC data. The effects of the blends on the interfacial adsorption properties, hydrophilicity, affinity, polar and non-polar parameters of EC membrane materials were studied subsequently. The research results indicate that the interfacial adsorption properties and hydrophilicity of EC have been improved by solution blending with CA. The alloys are superior to EC in the separation efficiency for non-dissociable polar organic solute. The EC/CA alloy (80:20, ω) is suitable for desalting and desaccharifying.
基金The project was supported by Return Student Foundation of the State Education Commission of China
文摘Critical concentrations of lyotropic liquid crystalline ethylcellulose in more than ten solvents were determined using both Abbe refractometer and polarized microscopy. Critical concentration C-crit of forming Liquid crystal phase decreased with increasing solubility parameter delta of solvent until approaching the delta of polymer. Although the alcohols used as solvents had the same variation rule, the critical concentration values of their solutions were much higher, due to their excessive large hydrogen bond component of delta. The experiments of using mixed solvents which showed good linear relation between C-crit and delta also proved this rule. A technique of Transmission Optical Analysis was first used to estimate the concentration dependence of critical phase transition temperature T-crit of EC, and a T-C phase diagram could be drawn.
基金This work is supported by The National Natural Science Foundation of China
文摘Ethyl cellulose (EC), taken as a thermotropic liquid crystalline polymer, was blended with polypropylene (PP), followed by injection molding. Fibre-forming of EC in the PP matrix is analyzed,based on the rheological data,dynamic mechanical analysis and fracture micrographs of EC/PP blends. The addition of maleated PP, for the modification of the interphasial interaction between the PP matrix and the EC fibrils, did not impair the fiber formation substantially.
文摘Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents.
文摘The present study investigates the preparation of sustained release drug-loaded nanofibers using a novel epoxy-coated spinneret. With ethyl cellulose (EC) and ketoprofen (KET) as the filament-forming matrix and the active pharmaceutical ingredient, Drug-loaded composite nanofibers are generated smoothly and continuously with few user interventions. Field-emission scanning electron microscopic observations demonstrated that the composite nanofibers prepared using the epoxy-coated spinneret have better quality than those from a traditional stainless steel spinneret in terms of diameter and its distribution. Both of the composite nanofibers are in essential a molecular solid dispersion of EC and KET based on the hydrogen bonding between them, as verified by XRD and ATR-FTIR results. In vitro dissolution tests show that the nanofibers resulted from the new spinneret provide a finer sustained KET release profile than their counter-parts. Epoxy-coated spinneret is a useful tool to facilitate the electrospinning process through the prevention of clogging for generating high quality nanofibers.
基金Projects supported by the Science Fund of the Chinese Academy of Sciences.
文摘There was phase separation between the anisotropic and isotropic phases in the ethyl-acetyl cellulose/dichloroacetic acid cholesteric liquid crystalline solutions .The textures of mesophase varied with the concentration. The mesophases could form the disc-like texture, oily streaks texture and texture of domains gathered randomly. In the first two textures the layers of the ordered molecular chain were perpendicular to the slide surface and the axes of the helical structure were parallel to the slide surface.
基金The authors are grateful for the financial support from the Science and Technology Program of Guangdong(2019A1515011890)National Key R&D Program of China(2017YFD0601003).
文摘Sugarcane bagasse(SCB)is an important by-product in the sugar industry.It is a source of cellulose fibers or cellulose for paper mills and textiles factories.In this study,SCB was ethyl etherified in tetrahydrofuran(THF)after alkali pretreatment.The alkali concentration for the pretreatment,the ratio of ethyl bromide(EtBr)to dried SCB in the reaction,reaction time,and temperature were investigated for the etherification of SCB.The ethoxyl content and characterization of the product were determined using headspace gas chromatography(HS-GC),Fourier Transform Infrared(FT-IR)and 13C-NMR spectroscopy,respectively.It was found that SCB was well-etherified with EtBr in alkali-THF.Upon ethylation of SCB,the ethoxyl content of the product was high when the alkali concentration and the ratio of EtBr to dried SCB were controlled from 50%to 75%and 4:1(V/w)to 6:1(V/w),respectively.The reaction occurred optimally when the temperature was controlled below 110℃;above this temperature,the degree of etherification decreased.The thermal stability of ethylated SCB was higher than that of SCB but slightly lower than that of commercial ethyl cellulose.Ethylated SCB has the potential to form composites with many materials because it is soluble in a wide variety of solvents.
文摘Analytical difficulties encountered in the determination of ethyl carbamate, a known cancinogen, in a wide variety of wines and spirits have been overcome by spe- cific, sensitive GC/GC and CC/CC/MS methods with a relatively shorter extraction procedure. The lowest detection limits were estimated to be 0. 1 and 0. 01μg/L for GC/GC and GC/GC/MS respectively. The RSD of the GC/GC method was 2. 5%.
文摘分析10%乙羧氟草醚EC对大豆田阔叶杂草的防除效果和最佳使用剂量,对其进行了田间药效试验。结果表明,10%乙羧氟草醚EC 300~1 200 m L/hm2处理,药后40 d对大豆田阔叶杂草的株防效达91.49%~99.87%,鲜重防效达95.65%~99.94%,可较好地控制大豆田野苋菜、马齿苋的为害,在杂草3~5叶期使用,用量以600~900 m L/hm2为宜。
文摘Ethyl cellulose(EC)/cellulose acetate(CA) blends were prepared by solution blending. The (thermal) stability of the blends was observed by TG, and the compatibility of them was also studied by visco-(metry), refractive index, DSC and IR. The results show that the (refractive) index or the trait vicidity of the EC/CA solution is linearly dependent on the mass composition of the blend. At 50 and 0.01 g/mL concentration, EC and CA are almost completely miscible. A single T_g was observed for a series of blends, which was in between the T_g of pure EC and that of pure CA. The decomposition temperature of the EC/CA blend decreased with the increase of EC mass fraction in the blends. These results indicate that there is good compatibility (between) EC and CA, and the thermal stability of the blends is improved compared to that of pure EC.