The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were ...The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.展开更多
The thermal behavior of thermotropic hydroxyethyl cellulose acetate (HECA)/polyethylene (PE) blends has been studied by DSC. It is found that the blends of HECA and PE are immiscible but the crystallization of PE is a...The thermal behavior of thermotropic hydroxyethyl cellulose acetate (HECA)/polyethylene (PE) blends has been studied by DSC. It is found that the blends of HECA and PE are immiscible but the crystallization of PE is affected by HECA chains in the blends with more than 50% HECA, which results in the subordinate crystallization of PE and the formation of imperfect structures in the PE crystals. The imperfection of PE crystals in the blends can be eliminated after annealing at 393K.展开更多
Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering te...Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering techniques. The nuclear magnetic relaxation time T_1's were measured as a function of composition in blends of PMMA and PVAc prepared from chloroform solution. The results show that the system is miscible for casting from chloroform solution.展开更多
In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on ...In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.展开更多
Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber c...Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber contains ammonium polyphosphate (APP) as acid source, double pentaerythritol (D-PER) as carbon source and melamine (MN) as gas source. The effects of nano-filler sepiolite and boehmite on the fire-resistant property of EVM rubber based on IFR system were investigated. The test results show that the system with nano-filler of sepiolite B10 has the best fire-resistant property. The process of smoke emission and thermal decomposition, the element composition of char surface and the micro morphology of intumecent char layer of the EVM IFR system with nano-filler were also studied by NBS chamber, thermogravimetric (TG) analysis, X- ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).展开更多
Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperat...Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperature fluidity of crude oil. In this work, molecular dynamics simulations were performed to investigate the effect of EVA on wax-hydrate coexistence system to evaluate the application potentiality of EVA to the flow assurance of deep-sea oil-gas-water multiphase flow system. Our simulation results reveal that wax molecules gradually stretched and stacked from random coiling to a directional and ordered crystalline state during the process of wax solidification. The strong affinity of polar vinyl acetate side chains of EVA to neighboring water molecules made the EVA molecule prefer being in a curly state,which disrupted the ordered crystallization of surrounding wax molecules and delayed the solidification rate of wax cluster. In addition, it is found that EVA cocrystallized with wax molecules to form eutectic when the wax was fully solidified. The simulation results of hydrate nucleation and growth show that the EVA molecule displayed a two-sided effect on gas adsorption of wax crystals, which was the key factor that affected the nucleation and growth of hydrates in the methane-water system. The nonpolar hydrocarbon backbone of EVA increased the diffusion rate of methane and water, allowing more methane to diffuse to the surface of wax crystals, reducing the methane concentration in aqueous solutions and inhibiting the hydrate formation. On the other hand, the nonpolar vinyl acetate chains had a repulsive effect on methane, which reduced the adsorption area of methane on the eutectic surface and decreased the adsorption threshold value of the wax crystal. The excluded methane molecules would continue dissociating in the aqueous phase and participating in the nucleation and growth process of hydrates.Therefore, the probability of hydrate formation would be increased. It was worth noting that the inhibition performance of EVA on hydrate formation mainly played a significant role in the system with small wax crystal, while its hydrate promotion effect played a dominant role in the system with lager wax crystal. In summary, EVA could significantly inhibit both of the wax and hydrate deposition for the waxgas-water multiphase system with low wax content. When the wax content in the system was high, the role of EVA was mainly played in the alleviation of wax crystallization rather than the gas hydrates. The results of the present work can contribute to a better understanding of EVA on wax deposition and hydrate formation, and provide theoretical support of the potential industrial applications of EVA.展开更多
The modified PVA CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water...The modified PVA CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA CA blend membrane has little change compared with that of the unmodified PVA CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA CA blend membrane does when the mass fraction of salts is the same.展开更多
The effect of the different geometrical dimensionality of two dimensional graphene nanosheets (2D GNSs) and one dimensional carbon nanotubes (1D CNTs) on the non-isothermal crystallization of an ethylene-vinyl ace...The effect of the different geometrical dimensionality of two dimensional graphene nanosheets (2D GNSs) and one dimensional carbon nanotubes (1D CNTs) on the non-isothermal crystallization of an ethylene-vinyl acetate (EVA) copolymer at high loading (5 wt%) was studied. Transmission electron microscopy indicated a homogeneous dispersion of GNSs and CNTs in EVA obtained by a solution dispersion process. Fourier-transform infrared spectroscopy and differential scanning calorimetry measurements showed that 1D CNTs and 2D GNSs acted as effective nucleating agents, with a noticeably increased onset crystallization temperature of EVA. A high weight fraction of nano-fillers slowed the overall crystallization rate of composites. At the same crystallization temperatute, the crystallization behavior of GNS/EVA composites was slowed compared to that of the CNT/EVA ones owing to larger nucleus barrier and activation energy of diffusion. Dynamic mechanical relaxation and rheology behavior of CNT/EVA and GNS/EVA composites demonstrated that the planar structure of the GNSs had an intensively negative effect on EVA chain mobility due to interactions between nano- fillers and polymer chains, as well as spatial restriction.展开更多
文摘The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.
文摘The thermal behavior of thermotropic hydroxyethyl cellulose acetate (HECA)/polyethylene (PE) blends has been studied by DSC. It is found that the blends of HECA and PE are immiscible but the crystallization of PE is affected by HECA chains in the blends with more than 50% HECA, which results in the subordinate crystallization of PE and the formation of imperfect structures in the PE crystals. The imperfection of PE crystals in the blends can be eliminated after annealing at 393K.
文摘Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering techniques. The nuclear magnetic relaxation time T_1's were measured as a function of composition in blends of PMMA and PVAc prepared from chloroform solution. The results show that the system is miscible for casting from chloroform solution.
基金supported by the National Science and Technology Planning Project (No.2011BAC08B00)the National High Technology Research and Development Program of China (863 Program)(No.2012AA03A611)
文摘In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.
基金Sponsored by Project in National Key Technology R&D Program(2006BAE03B05-2)
文摘Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber contains ammonium polyphosphate (APP) as acid source, double pentaerythritol (D-PER) as carbon source and melamine (MN) as gas source. The effects of nano-filler sepiolite and boehmite on the fire-resistant property of EVM rubber based on IFR system were investigated. The test results show that the system with nano-filler of sepiolite B10 has the best fire-resistant property. The process of smoke emission and thermal decomposition, the element composition of char surface and the micro morphology of intumecent char layer of the EVM IFR system with nano-filler were also studied by NBS chamber, thermogravimetric (TG) analysis, X- ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).
基金financial support received from National Natural Science Foundation of China(22178378 and 22127812)"Tianchi Talent"Recruitment Program,Xinjiang Tianshan Innovation Team(2022TSYCTD0002)Xinjiang Uygur Region"One Case,One Policy"Strategic Talent Introduction Project(XQZX20240054)are gratefully acknowledged.
文摘Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperature fluidity of crude oil. In this work, molecular dynamics simulations were performed to investigate the effect of EVA on wax-hydrate coexistence system to evaluate the application potentiality of EVA to the flow assurance of deep-sea oil-gas-water multiphase flow system. Our simulation results reveal that wax molecules gradually stretched and stacked from random coiling to a directional and ordered crystalline state during the process of wax solidification. The strong affinity of polar vinyl acetate side chains of EVA to neighboring water molecules made the EVA molecule prefer being in a curly state,which disrupted the ordered crystallization of surrounding wax molecules and delayed the solidification rate of wax cluster. In addition, it is found that EVA cocrystallized with wax molecules to form eutectic when the wax was fully solidified. The simulation results of hydrate nucleation and growth show that the EVA molecule displayed a two-sided effect on gas adsorption of wax crystals, which was the key factor that affected the nucleation and growth of hydrates in the methane-water system. The nonpolar hydrocarbon backbone of EVA increased the diffusion rate of methane and water, allowing more methane to diffuse to the surface of wax crystals, reducing the methane concentration in aqueous solutions and inhibiting the hydrate formation. On the other hand, the nonpolar vinyl acetate chains had a repulsive effect on methane, which reduced the adsorption area of methane on the eutectic surface and decreased the adsorption threshold value of the wax crystal. The excluded methane molecules would continue dissociating in the aqueous phase and participating in the nucleation and growth process of hydrates.Therefore, the probability of hydrate formation would be increased. It was worth noting that the inhibition performance of EVA on hydrate formation mainly played a significant role in the system with small wax crystal, while its hydrate promotion effect played a dominant role in the system with lager wax crystal. In summary, EVA could significantly inhibit both of the wax and hydrate deposition for the waxgas-water multiphase system with low wax content. When the wax content in the system was high, the role of EVA was mainly played in the alleviation of wax crystallization rather than the gas hydrates. The results of the present work can contribute to a better understanding of EVA on wax deposition and hydrate formation, and provide theoretical support of the potential industrial applications of EVA.
文摘The modified PVA CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA CA blend membrane has little change compared with that of the unmodified PVA CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA CA blend membrane does when the mass fraction of salts is the same.
基金supported by the National Science Fund for Distinguished Young Scholars(No.50925311)the National Natural Science Foundation of China(Nos.20976112,51033004)
文摘The effect of the different geometrical dimensionality of two dimensional graphene nanosheets (2D GNSs) and one dimensional carbon nanotubes (1D CNTs) on the non-isothermal crystallization of an ethylene-vinyl acetate (EVA) copolymer at high loading (5 wt%) was studied. Transmission electron microscopy indicated a homogeneous dispersion of GNSs and CNTs in EVA obtained by a solution dispersion process. Fourier-transform infrared spectroscopy and differential scanning calorimetry measurements showed that 1D CNTs and 2D GNSs acted as effective nucleating agents, with a noticeably increased onset crystallization temperature of EVA. A high weight fraction of nano-fillers slowed the overall crystallization rate of composites. At the same crystallization temperatute, the crystallization behavior of GNS/EVA composites was slowed compared to that of the CNT/EVA ones owing to larger nucleus barrier and activation energy of diffusion. Dynamic mechanical relaxation and rheology behavior of CNT/EVA and GNS/EVA composites demonstrated that the planar structure of the GNSs had an intensively negative effect on EVA chain mobility due to interactions between nano- fillers and polymer chains, as well as spatial restriction.