The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3...The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ have been measured at room temperature. The luminescence sensitizaiton of Eu^2+ by Ce^3+ inCa_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ has been expounded under the excitation of ultraviolet light and the efficient nonradiative energy transfer from Ce^3+ to Eu^2+ in this system is confirmed.展开更多
Excitation and emission spectra of new borate La_2CaB_(10)O_(19) doped Eu^(3+) in VUV-VIS range, high resolution (emission) spectra at room temperature and lifetime of Eu^(3+) were investigated. The emission line at a...Excitation and emission spectra of new borate La_2CaB_(10)O_(19) doped Eu^(3+) in VUV-VIS range, high resolution (emission) spectra at room temperature and lifetime of Eu^(3+) were investigated. The emission line at about 616 nm attributed to the (()~5D_0)-(()~7F_2) transition of Eu^(3+) is the most intense emission of Eu^(3+). The broad band at about 244 nm is originated from charge transition band (CTB) of O^(2-)→Eu^(3+). According to the numbers of spectral lines (()~5D_0)-(()~7F_0) and (()~5D_0)-(()~7F_1) in high-resolution spectrum, Eu^(3+) ions occupy two crystallographic sites. The lifetimes of (()~5D_0)-(()~7F_0) transition of Eu^(3+) of two kinds of lattice sites are individually 2.1 and 2.6 ms, and both are exponential decay. In the VUV excitation spectrum, complicated band between 130 and 170 nm consists of host absorption and f-d transition of Eu^(3+).展开更多
Phosphor-in-glass(PiG)is a potential color convertor for high power WLEDs.A novel glass matrix with advanced performance is still a challenge.Recently,Eu^(3+)doped glass matrix has attracted much consideration mainly ...Phosphor-in-glass(PiG)is a potential color convertor for high power WLEDs.A novel glass matrix with advanced performance is still a challenge.Recently,Eu^(3+)doped glass matrix has attracted much consideration mainly due to its red compensation.A new borophosphate matrix to realize Eu^(3+)red light was designed in the Na_(2)O-ZnO-P_(2)O_(5)-B_(2)O_(3)-Eu_(2)O_(3)system.Meanwhile,a series of PiGs composed of different concentrations of Y3Al5O12:Ce phosphor and the matrix were also fabricated by re-sintering.The crystallization of Eu^(3+)based phosphate offers a novel red emission quenching apart from normal concentration quenching in the glass system.No direct energy transfer but only little reabso rption occurs between Eu^(3+)and Ce^(3+)ions.The Ce^(3+)concentration effect is obvious on the electroluminescent color.The optimized color rendering index of 79.7,the CIE coordinates near natural white and the range of CCT from 3943 to 6097 K were obtained for the packaged white light emitting diodes(WLEDs)together with the excellent CCT stability higher than about 97.5%and the quadruple thermal conductivity than that of silicon resin.The work implies borophosphate glass based PiGs with fine transparence and energy conversion efficiency are promising for excellent WLEDs,while the LED by using the PiG sample without any yellow phosphor doped is of high color purity and has a potential use as the 465 nm blue source.展开更多
The Eu^3+/Ag co-doped rare earth disilicate Y2Si2O7 microcrystal was synthesized by sol-gel method. Through controlling the thermal treatment process of YzSi2OT:EU3+/Ag precursor, various phases (amorphous, α, ...The Eu^3+/Ag co-doped rare earth disilicate Y2Si2O7 microcrystal was synthesized by sol-gel method. Through controlling the thermal treatment process of YzSi2OT:EU3+/Ag precursor, various phases (amorphous, α, β, γ, δ) were prepared. White light emis- sion was observed under UV light excitation in the samples heavily doped with Ag. The white light was realized by combining the intense red emission of Eu3+, the green emission attributed to the very small molecule-like, non-plasmonic Ag particles (ML-Ag-particles), and the blue emission due to Ag ions. Results demonstrated that Eu3+/Ag co-doped Y2Si207 microcrystal could be potentially applied as white light emission phosphors for UV LED chips.展开更多
High quality Tb^3+/Eu^3+ co-doped cubic NaYF 4 single crystal in the size of Φ1.0 cm×6.6 cm was grown by a modified Bridgman method using KF as assistant flux for NaF-YF 3 system under the condition of complet...High quality Tb^3+/Eu^3+ co-doped cubic NaYF 4 single crystal in the size of Φ1.0 cm×6.6 cm was grown by a modified Bridgman method using KF as assistant flux for NaF-YF 3 system under the condition of completely closed Pt crucible.A white light emission from the combination of the violet-blue,blue,green,orange,and red lights with chromaticity coordinates of x = 0.3107,y = 0.3274,correlated color temperature of T c = 6637 K,color rendering index of R a = 83,and color quality scale of Q a = 82 could be obtained from 1.51 mol%Tb^3+ and 1.42 mol%Eu^3+ co-doped cubic NaYF 4 single crystal when being excited by a 369 nm light.This indicates that Tb^3+/Eu^3+)co-doped cubic NaYF 4 single crystal has a potential application in white light emitting diode excited by ultraviolet light.展开更多
We reported on the high pressure luminescence spectra of polycrystalline Eu-doped GaN material synthesized in the reaction between alloys of gallium, bismuth and europium in ammonia atmosphere. The integrated luminesc...We reported on the high pressure luminescence spectra of polycrystalline Eu-doped GaN material synthesized in the reaction between alloys of gallium, bismuth and europium in ammonia atmosphere. The integrated luminescence intensity of the dominant Eu3+ ion transition (5D0→^7F2) at 622 nm increased approximately one order of rnagnitude whereas its spectral position and line width did not change significantly between ambient and 6.8 GPa pressure, respectively. Moreover, material was characterized with photo- and cathodo-luminescence, and photoluminescence excitation spectra at different temperatures. It was found that the Eu3+ ions occupying substitutional Ga site created different centers which could be effectively excited with above band gap excitation and from excitons resonantly photoexcited at the I2 bound exciton energy. Furthermore, the less efficient Eu3+ ions excitation path existed through intrinsic impurities and defeels generating shallow energy levels in the forbidden gap. It was proposed that reduction of the thermal quenching and consequent enhancement of Eu3+ ion emission intensity resulted from stronger localization of bound exciton on RESI trap induced by applied pressure.展开更多
The design and fabrication of rare earth ions incorporated into the inorganic/organic hybrid materials have attracted growing attention for seeking improved optical properties and photofunctional performances.In this ...The design and fabrication of rare earth ions incorporated into the inorganic/organic hybrid materials have attracted growing attention for seeking improved optical properties and photofunctional performances.In this paper,a novel hybrid composite based on the layered rare earth hydroxides was successfully prepared by the ion-exchange and intercalation chemical process.The rare earth elements in the composite contain gadolinium(Gd)and europium(Eu)and the molar ratio of Gd to Eu is kept constant at 1.9:0.1.Organic sodium dodecyl sulfonate and dye coumarin-3-carboxyllc acid are simultaneously incorporated into the layered rare earth hydroxides as supporting agent and light-harvesting antenna,respectively.The resulting hybrid layered rare earth hydroxides exhibit the enlarged interlayer distance with about 2.60 nm,and the chemical composition was confirmed through X-ray diffraction,carbon,hydrogen and nitrogen(CHN)elemental analysis,infrared spectroscopy,and thermogravimetric analysis.The layered solid compound shows the characteristic red emission corresponding to the^(5)D_(0)→^(7)F_(2)transition of Eu^(3+)ion,and the luminescence intensity of the optimized compound is greatly enhanced as compared to its corresponding nitrate and the hybrid composite without the introduction of dye molecule.The hybrid layered rare earth hydroxides can be exfoliated into bright colloidal solution,which show superior recognition capability to Cu^(2+)ion with the distinct luminescence quenching.The large quenching constant(1.4×10^(4)L/mol)and low detection limit(0.35μmol/L)are achieved for Cu^(2+)ion,implying a"turn-off"fluorescent sensor for Cu^(2+)detection.Moreover,a transparent film was prepared based on the colloidal solution and displays the typical red emission in folded shape.The new hybrid compound with enhanced luminescence and excellent photofunctional performances is expected to be applied in the fields of fluorescent sensing and flexible optical devices.展开更多
文摘The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ have been measured at room temperature. The luminescence sensitizaiton of Eu^2+ by Ce^3+ inCa_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ has been expounded under the excitation of ultraviolet light and the efficient nonradiative energy transfer from Ce^3+ to Eu^2+ in this system is confirmed.
文摘Excitation and emission spectra of new borate La_2CaB_(10)O_(19) doped Eu^(3+) in VUV-VIS range, high resolution (emission) spectra at room temperature and lifetime of Eu^(3+) were investigated. The emission line at about 616 nm attributed to the (()~5D_0)-(()~7F_2) transition of Eu^(3+) is the most intense emission of Eu^(3+). The broad band at about 244 nm is originated from charge transition band (CTB) of O^(2-)→Eu^(3+). According to the numbers of spectral lines (()~5D_0)-(()~7F_0) and (()~5D_0)-(()~7F_1) in high-resolution spectrum, Eu^(3+) ions occupy two crystallographic sites. The lifetimes of (()~5D_0)-(()~7F_0) transition of Eu^(3+) of two kinds of lattice sites are individually 2.1 and 2.6 ms, and both are exponential decay. In the VUV excitation spectrum, complicated band between 130 and 170 nm consists of host absorption and f-d transition of Eu^(3+).
基金Project supported by the Joint Funds of the National Natural Science Foundation of China(U1932160)the National Natural Science Foundation of China(51605272)。
文摘Phosphor-in-glass(PiG)is a potential color convertor for high power WLEDs.A novel glass matrix with advanced performance is still a challenge.Recently,Eu^(3+)doped glass matrix has attracted much consideration mainly due to its red compensation.A new borophosphate matrix to realize Eu^(3+)red light was designed in the Na_(2)O-ZnO-P_(2)O_(5)-B_(2)O_(3)-Eu_(2)O_(3)system.Meanwhile,a series of PiGs composed of different concentrations of Y3Al5O12:Ce phosphor and the matrix were also fabricated by re-sintering.The crystallization of Eu^(3+)based phosphate offers a novel red emission quenching apart from normal concentration quenching in the glass system.No direct energy transfer but only little reabso rption occurs between Eu^(3+)and Ce^(3+)ions.The Ce^(3+)concentration effect is obvious on the electroluminescent color.The optimized color rendering index of 79.7,the CIE coordinates near natural white and the range of CCT from 3943 to 6097 K were obtained for the packaged white light emitting diodes(WLEDs)together with the excellent CCT stability higher than about 97.5%and the quadruple thermal conductivity than that of silicon resin.The work implies borophosphate glass based PiGs with fine transparence and energy conversion efficiency are promising for excellent WLEDs,while the LED by using the PiG sample without any yellow phosphor doped is of high color purity and has a potential use as the 465 nm blue source.
基金Project supported by the National Natural Science Foundation of China(11074232,11274288,21002097,11304300)the National Basic Research Program of China(2011CB932801,2012CB933702)Ministry of Education of China(20123402110034)
文摘The Eu^3+/Ag co-doped rare earth disilicate Y2Si2O7 microcrystal was synthesized by sol-gel method. Through controlling the thermal treatment process of YzSi2OT:EU3+/Ag precursor, various phases (amorphous, α, β, γ, δ) were prepared. White light emis- sion was observed under UV light excitation in the samples heavily doped with Ag. The white light was realized by combining the intense red emission of Eu3+, the green emission attributed to the very small molecule-like, non-plasmonic Ag particles (ML-Ag-particles), and the blue emission due to Ag ions. Results demonstrated that Eu3+/Ag co-doped Y2Si207 microcrystal could be potentially applied as white light emission phosphors for UV LED chips.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51472125 and 51272109)K.C.Wong Magna Fund in Ningbo University
文摘High quality Tb^3+/Eu^3+ co-doped cubic NaYF 4 single crystal in the size of Φ1.0 cm×6.6 cm was grown by a modified Bridgman method using KF as assistant flux for NaF-YF 3 system under the condition of completely closed Pt crucible.A white light emission from the combination of the violet-blue,blue,green,orange,and red lights with chromaticity coordinates of x = 0.3107,y = 0.3274,correlated color temperature of T c = 6637 K,color rendering index of R a = 83,and color quality scale of Q a = 82 could be obtained from 1.51 mol%Tb^3+ and 1.42 mol%Eu^3+ co-doped cubic NaYF 4 single crystal when being excited by a 369 nm light.This indicates that Tb^3+/Eu^3+)co-doped cubic NaYF 4 single crystal has a potential application in white light emitting diode excited by ultraviolet light.
基金supported by the Polish Committee for Scientific Research (PBZ/MEiN/01/2006/39)
文摘We reported on the high pressure luminescence spectra of polycrystalline Eu-doped GaN material synthesized in the reaction between alloys of gallium, bismuth and europium in ammonia atmosphere. The integrated luminescence intensity of the dominant Eu3+ ion transition (5D0→^7F2) at 622 nm increased approximately one order of rnagnitude whereas its spectral position and line width did not change significantly between ambient and 6.8 GPa pressure, respectively. Moreover, material was characterized with photo- and cathodo-luminescence, and photoluminescence excitation spectra at different temperatures. It was found that the Eu3+ ions occupying substitutional Ga site created different centers which could be effectively excited with above band gap excitation and from excitons resonantly photoexcited at the I2 bound exciton energy. Furthermore, the less efficient Eu3+ ions excitation path existed through intrinsic impurities and defeels generating shallow energy levels in the forbidden gap. It was proposed that reduction of the thermal quenching and consequent enhancement of Eu3+ ion emission intensity resulted from stronger localization of bound exciton on RESI trap induced by applied pressure.
基金Project supported by the National Natural Science Foundation of China(51972097)。
文摘The design and fabrication of rare earth ions incorporated into the inorganic/organic hybrid materials have attracted growing attention for seeking improved optical properties and photofunctional performances.In this paper,a novel hybrid composite based on the layered rare earth hydroxides was successfully prepared by the ion-exchange and intercalation chemical process.The rare earth elements in the composite contain gadolinium(Gd)and europium(Eu)and the molar ratio of Gd to Eu is kept constant at 1.9:0.1.Organic sodium dodecyl sulfonate and dye coumarin-3-carboxyllc acid are simultaneously incorporated into the layered rare earth hydroxides as supporting agent and light-harvesting antenna,respectively.The resulting hybrid layered rare earth hydroxides exhibit the enlarged interlayer distance with about 2.60 nm,and the chemical composition was confirmed through X-ray diffraction,carbon,hydrogen and nitrogen(CHN)elemental analysis,infrared spectroscopy,and thermogravimetric analysis.The layered solid compound shows the characteristic red emission corresponding to the^(5)D_(0)→^(7)F_(2)transition of Eu^(3+)ion,and the luminescence intensity of the optimized compound is greatly enhanced as compared to its corresponding nitrate and the hybrid composite without the introduction of dye molecule.The hybrid layered rare earth hydroxides can be exfoliated into bright colloidal solution,which show superior recognition capability to Cu^(2+)ion with the distinct luminescence quenching.The large quenching constant(1.4×10^(4)L/mol)and low detection limit(0.35μmol/L)are achieved for Cu^(2+)ion,implying a"turn-off"fluorescent sensor for Cu^(2+)detection.Moreover,a transparent film was prepared based on the colloidal solution and displays the typical red emission in folded shape.The new hybrid compound with enhanced luminescence and excellent photofunctional performances is expected to be applied in the fields of fluorescent sensing and flexible optical devices.