The neutral hydrogen evolution reaction(HER)is vital in the chemical industry,and its efficiency depends on the interior character of the catalyst.Herein,work function(WF)engineering is introduced via 3d metal(Fe,Co,N...The neutral hydrogen evolution reaction(HER)is vital in the chemical industry,and its efficiency depends on the interior character of the catalyst.Herein,work function(WF)engineering is introduced via 3d metal(Fe,Co,Ni,and Cu)doping for modulating the Fermi energy level of Mo2C.The defective energy level facilitates the free water molecule adsorption and,subsequently,promotes the neutral HER efficiency.Specifically,at a current density of 10 mA/cm2,Cu-Mo2C exhibits the best HER performance with an overpotential of 78 mV,followed by Ni-Mo2C,Co-Mo2C,Fe-Mo2C,and bare Mo2C with 90,95,100,and 173 mV,respectively,and the corresponding Tafel slope values are 40,43,42,56,and 102 mV/dec.The modified WF can also lead to an enhanced photocatalytic efficiency owing to the lowered Schottky barrier and excellent carrier transition across the electrocatalyst–solution interface.When coupling the metal-doped Mo2C samples with TiO2,enhanced photocatalytic neutral HER rates are obtained in comparison to the case with bare TiO2.Typically,the HER rates are 521,404,275,224,147,and 112μmol/h for Cu,Ni,Co,Fe,bare Mo2C,and bare TiO2,respectively.Time-resolved photoluminescence spectroscopy(TRPS)and ultrafast transient absorption(TA)measurements are carried out to confirm the recombination and migration of the photogenerated carriers.The fittedτvalues from the TRPS curves are 22.6,20.5,10.1,4.7,4.0,2.5,and 1.9 ns for TiO2,TiO2-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,and TiO2-Pt,respectively.Additionally,the fittedτvalues from the TA results are 31,73,and 105 ps for the TiO2-Mo2C,TiO2-Cu-Mo2C,and TiO2-Pt samples,respectively.This work provides in-depth insights into the WF modulation of an electrocatalyst for improving the HER performance.展开更多
A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐W...A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐WO3/TiO2 catalyst.The physicochemical properties were investigated by using XRD,BET,NH3‐TPD,H2‐TPR,and XPS,and the catalytic performance and K‐poisoning resistance were evaluated via a NH3‐SCR model reaction.Ce^4+and Zr^4+co‐doping were found to enhance the conversion of NOx,and exhibit the best K‐poisoning resistance owing to the largest BET‐specific surface area,pore volume,and total acid site concentration,as well as the minimal effects on the surface acidity and redox ability from K poisoning.The V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst also presents outstanding H2O+SO2 tolerance.Finally,the in situ DRIFTS reveals that the NH3‐SCR reaction over the V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst follows an L‐H mechanism,and that K poisoning does not change the reaction mechanism.展开更多
An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various eur...An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various europium ions doping concentrations were carried out. XRD patterns indicate that the samples show an amorphous matrix structure, and the SEM patterns show that the samples present a multi-hole loosen structure, and a rod structure after high-temperature annealling treatment (800 ℃) for 3 h. Raman spectra demonstrate that Y3+ and Eu3+ ions were incorporated into the composites successfully through the sol-gel and post-anneal process. Under the excitation of 387 nm (7F0→5G2) violet light (but not 394 nm (7F0→5L6)), the strongest emission spectrum, the red light, was observed at around 616 nm (5D0→7F2) when the samples were re-treated by annealing at high temperature after 3 months laying aside. Without annealing treatment, the optimized doping mole ratio of Eu ions is about 9%, which is much higher than that doped in SiOglass with the concentration of 3.5%, and it then becomes 5% when the samples are treated by high temperature annealing. In addition, the excitation of 532 nm (7F0→5D1) light can also arouse a comparatively strong emission.展开更多
Various affecting factors and degradation mechanism were studied on ultrasonic degradation of methyl orange adopting Y2O3 doping anatase TiO2 catalyst prepared in laboratory.In the experiment, the UV-VIS spectrophotom...Various affecting factors and degradation mechanism were studied on ultrasonic degradation of methyl orange adopting Y2O3 doping anatase TiO2 catalyst prepared in laboratory.In the experiment, the UV-VIS spectrophotometer was used to follow and inspect the degradation process of methyl orange.The results indicate that the ultrasonic degradation ratios of methyl orange in the presence of anatase TiO2 catalyst are much better than those without catalyst.Moreover, the catalytic performance of Y2O3 doping anatase TiO2 catalyst is obviously higher than that of anatase TiO2 catalyst without doping.The optimal conditions were adopted in this work and the degradation and COD elimination ratio of methyl orange got to98% and 99.0% in 90 min, respectively.展开更多
An energetic-material (NAN3) deflagration method for preparing N- and Ti3+-codoped TiO2 nanosheets (NT-TiO2) was developed. In this method, N radicals filled the crystal lattice, and Na clusters captured partial ...An energetic-material (NAN3) deflagration method for preparing N- and Ti3+-codoped TiO2 nanosheets (NT-TiO2) was developed. In this method, N radicals filled the crystal lattice, and Na clusters captured partial O from TiO2. The deflagration process was fast and facile and can be completed within 〈 I s after ignition. The obtained NT-TiO2 exhibited rough surfaces with nanopits and nanoholes. The doping concentration can be regulated by controlling the NaN3 addition. The NT-TiO2 samples showed significant enhancements in the visible-light absorption and photoelectric response. The simultaneously produced N radicals and Na clusters from NaN3 deflagration served as N sources and reduction agents, respectively. Additionally, the high deflagration temperature/ pressure improved the reactivity of N radicals and Na dusters. Thus, the present NaN3 deflagration method was demonstrated as an ultrafast and effective approach to fabricate NT-TiO2 with a visible-light response. The proposed NaN3 deflagration method allows the ultrafast synthesis of new functional materials via the efficient deflagration of energetic materials.展开更多
Conventional titanium dioxide(TiO2)photocatalyst could absorb only ultraviolet light due to its wide bandgap.In this paper,black TiO2 with narrow bandgap was prepared by introducing oxygen vacancies.Meanwhile.nitrogen...Conventional titanium dioxide(TiO2)photocatalyst could absorb only ultraviolet light due to its wide bandgap.In this paper,black TiO2 with narrow bandgap was prepared by introducing oxygen vacancies.Meanwhile.nitrogen(N)and sulfur(S)elements were doped to further broaden the visible light response range of TiOx(NS-BT),and then heterostructured N.S-doped black TiOz/g-C3Na(CN/NS-BT)was successfully constructed by easily accessible route.The formation of CN/NS-BT heteroiunction structure increased the generation and separation efficiency of photogenerated electron-hole pairs,as well as accelerated the transfer rate of the carriers.The as-prepared CN/NS-BT exhibited excellent photocatalytic performance towards the degradation of Rhodamine B(RhB)under visible light irradiation with satisfactory stability.The apparent reaction rate constant of CN/NS-BT(0.0079)was 15.8-fold higher than that of commercial P25(0.0005),The structure,morphology,chemical composition and optical properties of the as-prepared CN/NS-BT were characterized by various analytical methods,and possible photocatalytic enhancement mechanism was proposed.Overall,CN/NS-BT composites look promising as photocatalytic material for future environmental treatment.展开更多
文摘The neutral hydrogen evolution reaction(HER)is vital in the chemical industry,and its efficiency depends on the interior character of the catalyst.Herein,work function(WF)engineering is introduced via 3d metal(Fe,Co,Ni,and Cu)doping for modulating the Fermi energy level of Mo2C.The defective energy level facilitates the free water molecule adsorption and,subsequently,promotes the neutral HER efficiency.Specifically,at a current density of 10 mA/cm2,Cu-Mo2C exhibits the best HER performance with an overpotential of 78 mV,followed by Ni-Mo2C,Co-Mo2C,Fe-Mo2C,and bare Mo2C with 90,95,100,and 173 mV,respectively,and the corresponding Tafel slope values are 40,43,42,56,and 102 mV/dec.The modified WF can also lead to an enhanced photocatalytic efficiency owing to the lowered Schottky barrier and excellent carrier transition across the electrocatalyst–solution interface.When coupling the metal-doped Mo2C samples with TiO2,enhanced photocatalytic neutral HER rates are obtained in comparison to the case with bare TiO2.Typically,the HER rates are 521,404,275,224,147,and 112μmol/h for Cu,Ni,Co,Fe,bare Mo2C,and bare TiO2,respectively.Time-resolved photoluminescence spectroscopy(TRPS)and ultrafast transient absorption(TA)measurements are carried out to confirm the recombination and migration of the photogenerated carriers.The fittedτvalues from the TRPS curves are 22.6,20.5,10.1,4.7,4.0,2.5,and 1.9 ns for TiO2,TiO2-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,and TiO2-Pt,respectively.Additionally,the fittedτvalues from the TA results are 31,73,and 105 ps for the TiO2-Mo2C,TiO2-Cu-Mo2C,and TiO2-Pt samples,respectively.This work provides in-depth insights into the WF modulation of an electrocatalyst for improving the HER performance.
基金supported by the National Natural Science Foundation of China(21876168,21507130)the Key Projects for Common Key Technology Innovation in Key Industries in Chongqing(cstc2016zdcy-ztzx0020-01)+2 种基金the Chongqing Science&Technology Commission(cstc2016jcyjA0070,cstckjcxljrc13)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University(1456029)the Graduate Innovation Project of Chongqing Technology and Business University(yjscxx201803-028-22)~~
文摘A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐WO3/TiO2 catalyst.The physicochemical properties were investigated by using XRD,BET,NH3‐TPD,H2‐TPR,and XPS,and the catalytic performance and K‐poisoning resistance were evaluated via a NH3‐SCR model reaction.Ce^4+and Zr^4+co‐doping were found to enhance the conversion of NOx,and exhibit the best K‐poisoning resistance owing to the largest BET‐specific surface area,pore volume,and total acid site concentration,as well as the minimal effects on the surface acidity and redox ability from K poisoning.The V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst also presents outstanding H2O+SO2 tolerance.Finally,the in situ DRIFTS reveals that the NH3‐SCR reaction over the V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst follows an L‐H mechanism,and that K poisoning does not change the reaction mechanism.
基金NSFC (50272063)The Sci-Tec Project of Jiangmen City Nanocomposites (2006-10 &No .2007-11)
文摘An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various europium ions doping concentrations were carried out. XRD patterns indicate that the samples show an amorphous matrix structure, and the SEM patterns show that the samples present a multi-hole loosen structure, and a rod structure after high-temperature annealling treatment (800 ℃) for 3 h. Raman spectra demonstrate that Y3+ and Eu3+ ions were incorporated into the composites successfully through the sol-gel and post-anneal process. Under the excitation of 387 nm (7F0→5G2) violet light (but not 394 nm (7F0→5L6)), the strongest emission spectrum, the red light, was observed at around 616 nm (5D0→7F2) when the samples were re-treated by annealing at high temperature after 3 months laying aside. Without annealing treatment, the optimized doping mole ratio of Eu ions is about 9%, which is much higher than that doped in SiOglass with the concentration of 3.5%, and it then becomes 5% when the samples are treated by high temperature annealing. In addition, the excitation of 532 nm (7F0→5D1) light can also arouse a comparatively strong emission.
基金Project supported by the National Natural Science Foundation of China(20371023 )
文摘Various affecting factors and degradation mechanism were studied on ultrasonic degradation of methyl orange adopting Y2O3 doping anatase TiO2 catalyst prepared in laboratory.In the experiment, the UV-VIS spectrophotometer was used to follow and inspect the degradation process of methyl orange.The results indicate that the ultrasonic degradation ratios of methyl orange in the presence of anatase TiO2 catalyst are much better than those without catalyst.Moreover, the catalytic performance of Y2O3 doping anatase TiO2 catalyst is obviously higher than that of anatase TiO2 catalyst without doping.The optimal conditions were adopted in this work and the degradation and COD elimination ratio of methyl orange got to98% and 99.0% in 90 min, respectively.
文摘An energetic-material (NAN3) deflagration method for preparing N- and Ti3+-codoped TiO2 nanosheets (NT-TiO2) was developed. In this method, N radicals filled the crystal lattice, and Na clusters captured partial O from TiO2. The deflagration process was fast and facile and can be completed within 〈 I s after ignition. The obtained NT-TiO2 exhibited rough surfaces with nanopits and nanoholes. The doping concentration can be regulated by controlling the NaN3 addition. The NT-TiO2 samples showed significant enhancements in the visible-light absorption and photoelectric response. The simultaneously produced N radicals and Na clusters from NaN3 deflagration served as N sources and reduction agents, respectively. Additionally, the high deflagration temperature/ pressure improved the reactivity of N radicals and Na dusters. Thus, the present NaN3 deflagration method was demonstrated as an ultrafast and effective approach to fabricate NT-TiO2 with a visible-light response. The proposed NaN3 deflagration method allows the ultrafast synthesis of new functional materials via the efficient deflagration of energetic materials.
基金Supported by the National Natural Science Foundation of China(No.51472106)the Natural Science Foundation of Jilin Province,China(Nos.20180101065JC,20190201129JC)+1 种基金the International Science and Technology Cooperation Project of Jilit Province,China(No.20200801059GH)the Industrial Technology Research and Development Project of Development and Reform Commission of Jilin Province,China(Nos.2019C045-3,2019C42-6)。
文摘Conventional titanium dioxide(TiO2)photocatalyst could absorb only ultraviolet light due to its wide bandgap.In this paper,black TiO2 with narrow bandgap was prepared by introducing oxygen vacancies.Meanwhile.nitrogen(N)and sulfur(S)elements were doped to further broaden the visible light response range of TiOx(NS-BT),and then heterostructured N.S-doped black TiOz/g-C3Na(CN/NS-BT)was successfully constructed by easily accessible route.The formation of CN/NS-BT heteroiunction structure increased the generation and separation efficiency of photogenerated electron-hole pairs,as well as accelerated the transfer rate of the carriers.The as-prepared CN/NS-BT exhibited excellent photocatalytic performance towards the degradation of Rhodamine B(RhB)under visible light irradiation with satisfactory stability.The apparent reaction rate constant of CN/NS-BT(0.0079)was 15.8-fold higher than that of commercial P25(0.0005),The structure,morphology,chemical composition and optical properties of the as-prepared CN/NS-BT were characterized by various analytical methods,and possible photocatalytic enhancement mechanism was proposed.Overall,CN/NS-BT composites look promising as photocatalytic material for future environmental treatment.