A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-lik...A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-like in the length range of 5.0-10.0 μm. The results of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy indicate that pure aragonite CaCO3:Eu^3+ is prepared using microwave irradiation and the Eu^3+ ion as a luminescence center inhabits the site of Ca^2+. The photoluminescence excitation (PLE) spectrum shows that the strong broad band at around 270 nm and weak sharp lines in 300-550 nm are assigned to the charge transfer band of Eu^3+-O^2- and intra-configurational 4f-4f transitions of Eu^3+, respectively. The photoluminescence (PL) spectrum implies that the red luminescence can be attributed to the transitions from the ^5D0 excited level to the ^7FJ (J = 0, 1, 2, 3, 4) levels of Eu^3+ ions with the mainly electric dipole transition ^5D0 → ^7F2 (614 and 620 nm), and the Eu^3+ ions prefer to occupy the low symmetric site in the crystal lattice.展开更多
Nanosized Gd2(1–x)Eu2xTi2O7:yV5+ phosphors were prepared via sol-gel method and characterized with X-ray diffraction,Raman spectroscopy,diffuse reflectance spectra and photoluminescence spectra.Their PL properties we...Nanosized Gd2(1–x)Eu2xTi2O7:yV5+ phosphors were prepared via sol-gel method and characterized with X-ray diffraction,Raman spectroscopy,diffuse reflectance spectra and photoluminescence spectra.Their PL properties were investigated as functions of the Eu3+ doping concentration and annealing temperature.The results indicated that the as-prepared samples showed a strong emission of Eu3+ under the irradiation of 303 nm.For Eu3+-doped Gd2Ti2O7,the orange emission at 586 nm was the strongest,which was correspond...展开更多
Tetragonal structural(t-NdVO4)nanorod-arrays were fabricated by simple one-pot hydrothermal method.The phase,morphology and microstructure of NdVO4 were characterized by X-ray diffractometer,scanning electron microsco...Tetragonal structural(t-NdVO4)nanorod-arrays were fabricated by simple one-pot hydrothermal method.The phase,morphology and microstructure of NdVO4 were characterized by X-ray diffractometer,scanning electron microscope(SEM),transmission electron microscope(TEM),dispersive X-ray spectrometer(EDS)and selected area electron diffraction(SAED)techniques.t-NdVO4 nanorods are single-crystalline with a length of 100 nm and a diameter of 25 nm,which grow orientally along the direction of(112)crystalline plane and self-assemble to form nanorod-arrays.The results show that Eu^3+-doping interrupts the formation of NdVO4 nanorod-arrays,and then leads to the red-shift of the strongest luminescence emission of Nd3+transition from 4D3/2 state to 4I11/2 and decreases its intensity of the fluorescence emission at 400 nm sharply.The research results have some reference values to optimize the photoluminescence performance of rare earth vanadates.展开更多
Y2O3:Eu3+ phosphors co-doped with different metal cations (Li+, Na+, K+, Mg2+, Ca2+) are prepared by the gel- combustion method with Y2O3:Eu3+, and R(NO3)x (R = Li, Na, K, Mg, Ca) serving as raw materi...Y2O3:Eu3+ phosphors co-doped with different metal cations (Li+, Na+, K+, Mg2+, Ca2+) are prepared by the gel- combustion method with Y2O3:Eu3+, and R(NO3)x (R = Li, Na, K, Mg, Ca) serving as raw materials and glycine as fuel, calcined at 1000 ℃ for 2 h. The synthesized Y203 :Eu3+ phosphors doped with different metal cations and doping ratios are characterized by x-ray diffractometry (XRD), fluorescence and phosphorescent spectrophotometer. The co-doping metal cations are advantageous to the development of Y203:Eu3+ lattice. All the samples can emit red light peaked at 611 nm under 254-nm excited. The luminescence intensities of co-doping samples are increased because the cations increase the electron transition probability of Eu3+ from 5D0 level to 7F level. The fluorescence lifetime of Eu3+ (SD0 --+7F2) is increased by doping metal cations.展开更多
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2 + and Ce3+ . The methods of photoluminescence, the...Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2 + and Ce3+ . The methods of photoluminescence, thermolu-minescence and phosphorescence were used to study the samples, and possible mechanism was suggested. The co-doping of Ce3 + ions poisoned the phosphorescence emission of Eu2 + because of the competition to obtain the trapped electron . The phosphorescence of Ce3 + in the sample decays more quickly than that of Eu2 + , which is suggested for the reason that the emission energy of Ce3 + is higher or the distance between Ce3 + and electron traps of the glasses is longer.展开更多
This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% im...This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% impurity concentration. Our comprehensive analysis encompasses structural properties, electronic band structures, and charge density distributions. The optimized lattice constant and band gap energy of 3C-SiC were found to be 4.373 Å and 1.36 eV respectively, which is in agreement with previous research (Bui, 2012;Muchiri et al., 2018). Our results show that B doping narrows the band gap, enhances electrical conductivity, and influences charge transfer interactions. The charge density analysis reveals substantial interactions between B dopants and surrounding carbon atoms. This work not only enhances our understanding of the material’s electronic properties, but also highlights the importance of charge density analysis for characterizing charge transfer mechanisms and their implications in the 3C-SiC semiconductors.展开更多
采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照...采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照片显示荧光粉为2μm的不规则颗粒。当激发波长为264 nm时,发射光谱出现四个尖锐的发射峰,分别位于591(^(5)D_(0)→^(7)F_(1))、619(^(5)D_(0)→^(7)F_(2))、657(^(5)D_(0)→^(7)F_(3))和693 nm(^(5)D_(0)→^(7)F_(4))。Eu^(3+)离子之间能量传递为电偶极子-电偶极子(d-d)相互作用。YMT∶0.14Eu^(3+)荧光粉的CIE色度坐标为(0.645,0.332),与红光标准色坐标(0.67,0.33)非常接近。变温PL光谱及热激活能计算结果显示荧光粉具有一定的热稳定性,因此YMT∶Eu^(3+)是一种具有潜在应用价值的LED红色荧光粉。展开更多
基金supported by the National Natural Science Foundation of China (No. 10476024) the Science and Technology Bureau of Sichuan Province, China (No. 2006J13-059)
文摘A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-like in the length range of 5.0-10.0 μm. The results of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy indicate that pure aragonite CaCO3:Eu^3+ is prepared using microwave irradiation and the Eu^3+ ion as a luminescence center inhabits the site of Ca^2+. The photoluminescence excitation (PLE) spectrum shows that the strong broad band at around 270 nm and weak sharp lines in 300-550 nm are assigned to the charge transfer band of Eu^3+-O^2- and intra-configurational 4f-4f transitions of Eu^3+, respectively. The photoluminescence (PL) spectrum implies that the red luminescence can be attributed to the transitions from the ^5D0 excited level to the ^7FJ (J = 0, 1, 2, 3, 4) levels of Eu^3+ ions with the mainly electric dipole transition ^5D0 → ^7F2 (614 and 620 nm), and the Eu^3+ ions prefer to occupy the low symmetric site in the crystal lattice.
基金supported by Cultivating Innovative Talents for Colleges & Universities of Henan Province (2002006)Open Research Foundation of Henan University
文摘Nanosized Gd2(1–x)Eu2xTi2O7:yV5+ phosphors were prepared via sol-gel method and characterized with X-ray diffraction,Raman spectroscopy,diffuse reflectance spectra and photoluminescence spectra.Their PL properties were investigated as functions of the Eu3+ doping concentration and annealing temperature.The results indicated that the as-prepared samples showed a strong emission of Eu3+ under the irradiation of 303 nm.For Eu3+-doped Gd2Ti2O7,the orange emission at 586 nm was the strongest,which was correspond...
基金Project(51202066)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0784)supported by the Program for New Century Excellent Talents of the Education Ministry,China。
文摘Tetragonal structural(t-NdVO4)nanorod-arrays were fabricated by simple one-pot hydrothermal method.The phase,morphology and microstructure of NdVO4 were characterized by X-ray diffractometer,scanning electron microscope(SEM),transmission electron microscope(TEM),dispersive X-ray spectrometer(EDS)and selected area electron diffraction(SAED)techniques.t-NdVO4 nanorods are single-crystalline with a length of 100 nm and a diameter of 25 nm,which grow orientally along the direction of(112)crystalline plane and self-assemble to form nanorod-arrays.The results show that Eu^3+-doping interrupts the formation of NdVO4 nanorod-arrays,and then leads to the red-shift of the strongest luminescence emission of Nd3+transition from 4D3/2 state to 4I11/2 and decreases its intensity of the fluorescence emission at 400 nm sharply.The research results have some reference values to optimize the photoluminescence performance of rare earth vanadates.
文摘Y2O3:Eu3+ phosphors co-doped with different metal cations (Li+, Na+, K+, Mg2+, Ca2+) are prepared by the gel- combustion method with Y2O3:Eu3+, and R(NO3)x (R = Li, Na, K, Mg, Ca) serving as raw materials and glycine as fuel, calcined at 1000 ℃ for 2 h. The synthesized Y203 :Eu3+ phosphors doped with different metal cations and doping ratios are characterized by x-ray diffractometry (XRD), fluorescence and phosphorescent spectrophotometer. The co-doping metal cations are advantageous to the development of Y203:Eu3+ lattice. All the samples can emit red light peaked at 611 nm under 254-nm excited. The luminescence intensities of co-doping samples are increased because the cations increase the electron transition probability of Eu3+ from 5D0 level to 7F level. The fluorescence lifetime of Eu3+ (SD0 --+7F2) is increased by doping metal cations.
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
基金Project supported by Technological Key Project of Basic Research of Jilin Province (20020601)
文摘Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2 + and Ce3+ . The methods of photoluminescence, thermolu-minescence and phosphorescence were used to study the samples, and possible mechanism was suggested. The co-doping of Ce3 + ions poisoned the phosphorescence emission of Eu2 + because of the competition to obtain the trapped electron . The phosphorescence of Ce3 + in the sample decays more quickly than that of Eu2 + , which is suggested for the reason that the emission energy of Ce3 + is higher or the distance between Ce3 + and electron traps of the glasses is longer.
文摘This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% impurity concentration. Our comprehensive analysis encompasses structural properties, electronic band structures, and charge density distributions. The optimized lattice constant and band gap energy of 3C-SiC were found to be 4.373 Å and 1.36 eV respectively, which is in agreement with previous research (Bui, 2012;Muchiri et al., 2018). Our results show that B doping narrows the band gap, enhances electrical conductivity, and influences charge transfer interactions. The charge density analysis reveals substantial interactions between B dopants and surrounding carbon atoms. This work not only enhances our understanding of the material’s electronic properties, but also highlights the importance of charge density analysis for characterizing charge transfer mechanisms and their implications in the 3C-SiC semiconductors.
文摘采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照片显示荧光粉为2μm的不规则颗粒。当激发波长为264 nm时,发射光谱出现四个尖锐的发射峰,分别位于591(^(5)D_(0)→^(7)F_(1))、619(^(5)D_(0)→^(7)F_(2))、657(^(5)D_(0)→^(7)F_(3))和693 nm(^(5)D_(0)→^(7)F_(4))。Eu^(3+)离子之间能量传递为电偶极子-电偶极子(d-d)相互作用。YMT∶0.14Eu^(3+)荧光粉的CIE色度坐标为(0.645,0.332),与红光标准色坐标(0.67,0.33)非常接近。变温PL光谱及热激活能计算结果显示荧光粉具有一定的热稳定性,因此YMT∶Eu^(3+)是一种具有潜在应用价值的LED红色荧光粉。