Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to st...Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.展开更多
AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of...AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.展开更多
The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of...The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process.展开更多
A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition...A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.展开更多
采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照...采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照片显示荧光粉为2μm的不规则颗粒。当激发波长为264 nm时,发射光谱出现四个尖锐的发射峰,分别位于591(^(5)D_(0)→^(7)F_(1))、619(^(5)D_(0)→^(7)F_(2))、657(^(5)D_(0)→^(7)F_(3))和693 nm(^(5)D_(0)→^(7)F_(4))。Eu^(3+)离子之间能量传递为电偶极子-电偶极子(d-d)相互作用。YMT∶0.14Eu^(3+)荧光粉的CIE色度坐标为(0.645,0.332),与红光标准色坐标(0.67,0.33)非常接近。变温PL光谱及热激活能计算结果显示荧光粉具有一定的热稳定性,因此YMT∶Eu^(3+)是一种具有潜在应用价值的LED红色荧光粉。展开更多
文摘Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.
文摘AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.
基金the National Natural Science Foundation of China (92034301,22078063 and 22022804)Major Program of Qingyuan Innovation Laboratory (00121003)the Natural Science Foundation of Fujian Province (2020H6007)。
文摘The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process.
基金supported by the National Natural Science Foundation of China(21804050)the National Key R and D Program of China(2018YFD0901003)+2 种基金the Science and Technology Planning Project of Xiamen,China(3502Z20183031)the Fujian Provincial Fund Project(2018J01432)the Xiamen Science and Technology Planning Project,China(3502Z20183031)。
文摘A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.
文摘采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照片显示荧光粉为2μm的不规则颗粒。当激发波长为264 nm时,发射光谱出现四个尖锐的发射峰,分别位于591(^(5)D_(0)→^(7)F_(1))、619(^(5)D_(0)→^(7)F_(2))、657(^(5)D_(0)→^(7)F_(3))和693 nm(^(5)D_(0)→^(7)F_(4))。Eu^(3+)离子之间能量传递为电偶极子-电偶极子(d-d)相互作用。YMT∶0.14Eu^(3+)荧光粉的CIE色度坐标为(0.645,0.332),与红光标准色坐标(0.67,0.33)非常接近。变温PL光谱及热激活能计算结果显示荧光粉具有一定的热稳定性,因此YMT∶Eu^(3+)是一种具有潜在应用价值的LED红色荧光粉。