Eucommia ulmoides male flowers are rich in secondary metabolite,which have anti-tumor,sedative hypnotic,hypotensive,hypolipidemic,anti-fatigue,bacteriostatic,antioxidant and anti-aging effects.The conventional process...Eucommia ulmoides male flowers are rich in secondary metabolite,which have anti-tumor,sedative hypnotic,hypotensive,hypolipidemic,anti-fatigue,bacteriostatic,antioxidant and anti-aging effects.The conventional processing of E.ulmoides male flowers leads to the loss of nutrients and active ingredients.In recent years,cell wall breaking technology has been developed and utilized in various fields such as traditional Chinese medicine,good,chemical industry and biology.In order to promote the development of the E.ulmoides industry,the cell wall breaking technology and its characteristics are reviewed,and the application advantages of the cell wall breaking technology in the male flowers of E.ulmoides are discussed,and the prospect of the cell wall breaking of E.ulmoides is proposed in this article.展开更多
Background:Eucommia ulmoides Oliv. is a medicinal plant native to China, with its bark (Eucommiae Cortex) traditionally being used for medicinal purposes. Previous research has shown that Eucommia male flowers can exe...Background:Eucommia ulmoides Oliv. is a medicinal plant native to China, with its bark (Eucommiae Cortex) traditionally being used for medicinal purposes. Previous research has shown that Eucommia male flowers can exert anti-inflammatory, analgesic, antibacterial, and other pharmacological effects, including immune regulation. This study explored the anti-inflammatory effects of the 70% ethanol extract of male flowers (EF) of E. ulmoides in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and LPS-administered mice.Methods:Cytotoxicity of EF for RAW 264.7 cells was investigated using Cell Counting Kit-8. The production of proinflammatory mediators, nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 was determined using enzyme-linked immunosorbent assays. IL-17, IL-23, and IL-10 mRNA levels were determined using quantitative real-time polymerase chain reaction. Activation of the nuclear factor (NF)-κB pathway in RAW 264.7 cells was investigated via Western blotting. In vivo antiinflammatory effects of EF were studied in an LPS-induced acute inflammation mouse model by analyzing lung tissue histopathology, serum TNF-α and IL-6 levels, and myeloperoxidase (MPO) activity in lung tissue.Results:EF showed no significant cytotoxicity at concentrations from 10 to 60 μg/mL (cell viability > 80%) in the CCK-8 cell viability assay. EF inhibited the RAW 264.7 cell proliferation (EF 60 μg/mL, 120 μg/mL, and 250 μg/mL vs. negative control: 87.31±2.39% vs. 100.00±2.50%, P=0.001;79.01±2.56 vs. 100.00±2.50%, P<0.001;and 64.83±2.50 vs. 100.00±2.50%, P<0.001), suppressed NO (EF 20 μg/mL and 30 μg/mL vs. LPS only, 288.81±38.01 vs. 447.68±19.07 μmol/L, P=0.004;and 158.80±45.14 vs. 447.68±19.07 μmol/L, P<0.001), TNF-α (LPS+EF vs. LPS only, 210.20±13.85 vs. 577.70±5.35 pg/mL, P<0.001), IL-1β (LPS+EF vs. LPS only, 193.30±10.80 vs. 411.03±42.28 pg/mL, P<0.001), and IL-6 (LPS+EF vs. LPS only, 149.67±11.60 vs. 524.80±6.24 pg/mL, P<0.001) secretion, and downregulated the mRNA expression of IL-17 (LPS+EF vs. LPS only, 0.23±0.02 vs. 0.43±0.12, P<0.001), IL-23 (LPS+EF vs. LPS only, 0.29±0.01 vs. 0.42±0.06, P=0.002), and IL-10 (LPS+EF vs. LPS only, 0.30±0.01 vs. 0.47±0.01, P=0.008) in LPS-stimulated RAW 264.7 cells. EF inhibited the LPS-induced NF-κB p65 (LPS+EF 20 μg/mL and 30 μg/mL vs. LPS only: 0.78±0.06 vs. 1.17±0.08, P<0.001;and 0.90±0.06 vs. 1.17±0.08, P=0.002) and inhibitor of kappa B (IκBα) phosphorylation (LPS+EF 20 μg/mL and 30 μg/mL vs. LPS only: 0.25±0.01 vs. 0.63±0.03, P<0.001;and 0.31±0.01 vs. 0.63±0.03, P<0.001), LPS+EF 30 μg/mL inhibited IκB kinase (IKKα/β) phosphorylation (LPS+EF 30 μg/mL vs. LPS only, 1.12±0.14 vs. 1.71±0.25, P=0.002) in RAW 264.7 cells. Furthermore, EF 10 mg/kg and EF 20 mg/kg inhibited lung tissue inflammation in vivo and suppressed the serum TNF-α (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 199.99±186.49 vs. 527.90±263.93 pg/mL, P=0.001;and 260.56±175.83 vs. 527.90±263.93 pg/mL, P=0.005), and IL-6 (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 41.26±30.42 vs. 79.45±14.16 pg/ml, P=0.011;and 42.01±26.26 vs. 79.45±14.16 pg/mL, P=0.012) levels and MPO (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 3.19±1.78 vs. 5.39±1.51 U/g, P=0.004;and 3.32±1.57 vs. 5.39±1.51 U/g, P=0.006) activity in lung tissue.Conclusions:EF could effectively inhibit the expression of inflammatory factors and overactivation of neutrophils. Further investigation is needed to evaluate its potential for anti-inflammation therapy.展开更多
对杜仲(Eucomm ia ulm oidesO liv.)雄株不同花期雄花中次生代谢产物含量进行分析测定,并对杜仲雄花次生代谢的生理基础及不同花期次生代谢产物含量差异进行了探讨。研究结果表明,雄花在不同花期次生代谢产物含量均有差异。总黄酮含量...对杜仲(Eucomm ia ulm oidesO liv.)雄株不同花期雄花中次生代谢产物含量进行分析测定,并对杜仲雄花次生代谢的生理基础及不同花期次生代谢产物含量差异进行了探讨。研究结果表明,雄花在不同花期次生代谢产物含量均有差异。总黄酮含量在花蕾期最高(4.010%),始花期最低(2.422%),从盛花期到末花期逐渐上升;桃叶珊瑚苷和绿原酸含量均在花蕾期最高(分别为2.351%和1.075%),盛花期最低(分别为1.463%和0.503%),至末花期含量上升;京尼平苷酸含量在始花期最低(0.217%),从盛花期开始逐渐升高,至末花期高达1.403%;次生代谢产物总量也以花蕾期为最高(7.420%)。杜仲雄花的花蕾期和盛花期是兼顾质量和产量的最佳采摘期。展开更多
目的观察杜仲皮、杜仲雄花醇提物对鸡卵清蛋白(OVA)所致小鼠气道变应性炎症的影响,探讨其作用机制。方法实验第0、7日,OVA腹腔注射致敏,继而滴鼻激发21 d,建立小鼠气道变应性炎症模型。实验小鼠随机分为正常组、模型组、杜仲皮醇提物组...目的观察杜仲皮、杜仲雄花醇提物对鸡卵清蛋白(OVA)所致小鼠气道变应性炎症的影响,探讨其作用机制。方法实验第0、7日,OVA腹腔注射致敏,继而滴鼻激发21 d,建立小鼠气道变应性炎症模型。实验小鼠随机分为正常组、模型组、杜仲皮醇提物组(杜仲皮组)、杜仲雄花醇提物组(杜仲雄花组)和地塞米松组,各给药组给予相应药物灌胃。肺组织行HE、PAS染色,观察支气管及周围肺组织病理改变,ELISA检测小鼠血清OVA-Ig E、白细胞介素(IL)-4、干扰素-γ(IFN-γ)、IL-13水平,免疫组化检测小鼠肺组织细胞间黏附分子-1(ICAM-1)、血管内皮生长因子(VEGF)、基质金属蛋白酶9(MMP9)、组织金属蛋白酶抑制剂1(TIMP1)表达,流式细胞术检测小鼠外周血Th17+细胞表达,RT-PCR检测小鼠肺组织肿瘤坏死因子-α(TNF-α)、IL-6 m RNA表达。结果模型组小鼠肺组织可见嗜酸性粒细胞及其他炎症细胞浸润,支气管痉挛,黏液分泌增加,杜仲皮组和杜仲雄花组小鼠肺组织病理明显改善。与正常组比较,模型组小鼠血清OVA-Ig E、IL-4、IL-13水平升高,IFN-γ水平降低(P<0.05,P<0.01),肺组织ICAM-1、VEGF、MMP9表达增强,TIMP1表达降低(P<0.01),外周血IL-17^+细胞增加,肺组织TNF-α、IL-6 m RNA表达均升高(P<0.01);与模型组比较,杜仲皮组和杜仲雄花组小鼠血清OVA-Ig E、IL-4、IL-13水平明显下调(P<0.01),ICAM-1、VEGF表达明显下调(P<0.05,P<0.01),TIMP1表达升高,外周血IL-17+细胞降低,肺组织IL-6 m RNA表达降低(P<0.05,P<0.01),杜仲皮组还可诱导IFN-γ分泌(P<0.01),下调TNF-αmRNA表达(P<0.05),杜仲雄花组MMP9表达明显下调(P<0.05)。结论杜仲皮、杜仲雄花醇提物可能通过降低模型小鼠OVA-Ig E产生,抑制Th2类细胞因子分泌,下调Th17细胞,抑制促炎细胞因子表达,对气道变应性炎症有一定抑制作用。展开更多
基金Supported by Project of Department of Education of Hunan Province(13CY017)
文摘Eucommia ulmoides male flowers are rich in secondary metabolite,which have anti-tumor,sedative hypnotic,hypotensive,hypolipidemic,anti-fatigue,bacteriostatic,antioxidant and anti-aging effects.The conventional processing of E.ulmoides male flowers leads to the loss of nutrients and active ingredients.In recent years,cell wall breaking technology has been developed and utilized in various fields such as traditional Chinese medicine,good,chemical industry and biology.In order to promote the development of the E.ulmoides industry,the cell wall breaking technology and its characteristics are reviewed,and the application advantages of the cell wall breaking technology in the male flowers of E.ulmoides are discussed,and the prospect of the cell wall breaking of E.ulmoides is proposed in this article.
基金grants from the Natural Science Foundation of China (Nos.81573814, 81773922)the Shanghai Construction Project of the Establishment of Innovation Center (No.U163020201)the Shanghai University of Traditional Chinese Medicine (No.2016YSN10).
文摘Background:Eucommia ulmoides Oliv. is a medicinal plant native to China, with its bark (Eucommiae Cortex) traditionally being used for medicinal purposes. Previous research has shown that Eucommia male flowers can exert anti-inflammatory, analgesic, antibacterial, and other pharmacological effects, including immune regulation. This study explored the anti-inflammatory effects of the 70% ethanol extract of male flowers (EF) of E. ulmoides in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and LPS-administered mice.Methods:Cytotoxicity of EF for RAW 264.7 cells was investigated using Cell Counting Kit-8. The production of proinflammatory mediators, nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 was determined using enzyme-linked immunosorbent assays. IL-17, IL-23, and IL-10 mRNA levels were determined using quantitative real-time polymerase chain reaction. Activation of the nuclear factor (NF)-κB pathway in RAW 264.7 cells was investigated via Western blotting. In vivo antiinflammatory effects of EF were studied in an LPS-induced acute inflammation mouse model by analyzing lung tissue histopathology, serum TNF-α and IL-6 levels, and myeloperoxidase (MPO) activity in lung tissue.Results:EF showed no significant cytotoxicity at concentrations from 10 to 60 μg/mL (cell viability > 80%) in the CCK-8 cell viability assay. EF inhibited the RAW 264.7 cell proliferation (EF 60 μg/mL, 120 μg/mL, and 250 μg/mL vs. negative control: 87.31±2.39% vs. 100.00±2.50%, P=0.001;79.01±2.56 vs. 100.00±2.50%, P<0.001;and 64.83±2.50 vs. 100.00±2.50%, P<0.001), suppressed NO (EF 20 μg/mL and 30 μg/mL vs. LPS only, 288.81±38.01 vs. 447.68±19.07 μmol/L, P=0.004;and 158.80±45.14 vs. 447.68±19.07 μmol/L, P<0.001), TNF-α (LPS+EF vs. LPS only, 210.20±13.85 vs. 577.70±5.35 pg/mL, P<0.001), IL-1β (LPS+EF vs. LPS only, 193.30±10.80 vs. 411.03±42.28 pg/mL, P<0.001), and IL-6 (LPS+EF vs. LPS only, 149.67±11.60 vs. 524.80±6.24 pg/mL, P<0.001) secretion, and downregulated the mRNA expression of IL-17 (LPS+EF vs. LPS only, 0.23±0.02 vs. 0.43±0.12, P<0.001), IL-23 (LPS+EF vs. LPS only, 0.29±0.01 vs. 0.42±0.06, P=0.002), and IL-10 (LPS+EF vs. LPS only, 0.30±0.01 vs. 0.47±0.01, P=0.008) in LPS-stimulated RAW 264.7 cells. EF inhibited the LPS-induced NF-κB p65 (LPS+EF 20 μg/mL and 30 μg/mL vs. LPS only: 0.78±0.06 vs. 1.17±0.08, P<0.001;and 0.90±0.06 vs. 1.17±0.08, P=0.002) and inhibitor of kappa B (IκBα) phosphorylation (LPS+EF 20 μg/mL and 30 μg/mL vs. LPS only: 0.25±0.01 vs. 0.63±0.03, P<0.001;and 0.31±0.01 vs. 0.63±0.03, P<0.001), LPS+EF 30 μg/mL inhibited IκB kinase (IKKα/β) phosphorylation (LPS+EF 30 μg/mL vs. LPS only, 1.12±0.14 vs. 1.71±0.25, P=0.002) in RAW 264.7 cells. Furthermore, EF 10 mg/kg and EF 20 mg/kg inhibited lung tissue inflammation in vivo and suppressed the serum TNF-α (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 199.99±186.49 vs. 527.90±263.93 pg/mL, P=0.001;and 260.56±175.83 vs. 527.90±263.93 pg/mL, P=0.005), and IL-6 (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 41.26±30.42 vs. 79.45±14.16 pg/ml, P=0.011;and 42.01±26.26 vs. 79.45±14.16 pg/mL, P=0.012) levels and MPO (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 3.19±1.78 vs. 5.39±1.51 U/g, P=0.004;and 3.32±1.57 vs. 5.39±1.51 U/g, P=0.006) activity in lung tissue.Conclusions:EF could effectively inhibit the expression of inflammatory factors and overactivation of neutrophils. Further investigation is needed to evaluate its potential for anti-inflammation therapy.
文摘对杜仲(Eucomm ia ulm oidesO liv.)雄株不同花期雄花中次生代谢产物含量进行分析测定,并对杜仲雄花次生代谢的生理基础及不同花期次生代谢产物含量差异进行了探讨。研究结果表明,雄花在不同花期次生代谢产物含量均有差异。总黄酮含量在花蕾期最高(4.010%),始花期最低(2.422%),从盛花期到末花期逐渐上升;桃叶珊瑚苷和绿原酸含量均在花蕾期最高(分别为2.351%和1.075%),盛花期最低(分别为1.463%和0.503%),至末花期含量上升;京尼平苷酸含量在始花期最低(0.217%),从盛花期开始逐渐升高,至末花期高达1.403%;次生代谢产物总量也以花蕾期为最高(7.420%)。杜仲雄花的花蕾期和盛花期是兼顾质量和产量的最佳采摘期。
文摘目的观察杜仲皮、杜仲雄花醇提物对鸡卵清蛋白(OVA)所致小鼠气道变应性炎症的影响,探讨其作用机制。方法实验第0、7日,OVA腹腔注射致敏,继而滴鼻激发21 d,建立小鼠气道变应性炎症模型。实验小鼠随机分为正常组、模型组、杜仲皮醇提物组(杜仲皮组)、杜仲雄花醇提物组(杜仲雄花组)和地塞米松组,各给药组给予相应药物灌胃。肺组织行HE、PAS染色,观察支气管及周围肺组织病理改变,ELISA检测小鼠血清OVA-Ig E、白细胞介素(IL)-4、干扰素-γ(IFN-γ)、IL-13水平,免疫组化检测小鼠肺组织细胞间黏附分子-1(ICAM-1)、血管内皮生长因子(VEGF)、基质金属蛋白酶9(MMP9)、组织金属蛋白酶抑制剂1(TIMP1)表达,流式细胞术检测小鼠外周血Th17+细胞表达,RT-PCR检测小鼠肺组织肿瘤坏死因子-α(TNF-α)、IL-6 m RNA表达。结果模型组小鼠肺组织可见嗜酸性粒细胞及其他炎症细胞浸润,支气管痉挛,黏液分泌增加,杜仲皮组和杜仲雄花组小鼠肺组织病理明显改善。与正常组比较,模型组小鼠血清OVA-Ig E、IL-4、IL-13水平升高,IFN-γ水平降低(P<0.05,P<0.01),肺组织ICAM-1、VEGF、MMP9表达增强,TIMP1表达降低(P<0.01),外周血IL-17^+细胞增加,肺组织TNF-α、IL-6 m RNA表达均升高(P<0.01);与模型组比较,杜仲皮组和杜仲雄花组小鼠血清OVA-Ig E、IL-4、IL-13水平明显下调(P<0.01),ICAM-1、VEGF表达明显下调(P<0.05,P<0.01),TIMP1表达升高,外周血IL-17+细胞降低,肺组织IL-6 m RNA表达降低(P<0.05,P<0.01),杜仲皮组还可诱导IFN-γ分泌(P<0.01),下调TNF-αmRNA表达(P<0.05),杜仲雄花组MMP9表达明显下调(P<0.05)。结论杜仲皮、杜仲雄花醇提物可能通过降低模型小鼠OVA-Ig E产生,抑制Th2类细胞因子分泌,下调Th17细胞,抑制促炎细胞因子表达,对气道变应性炎症有一定抑制作用。