Salt stress inhibits plant growth and affects the biosynthesis of its secondary metabolites.Flavonoids are natural compounds that possess many important biological activities,playing a significant role in the medicina...Salt stress inhibits plant growth and affects the biosynthesis of its secondary metabolites.Flavonoids are natural compounds that possess many important biological activities,playing a significant role in the medicinal activity of Eucommia ulmoides(E.ulmoides).To investigate the mechanism by which salt stress affects the biosynthesis of flavonoids in E.ulmoides,a comprehensive analysis of metabolomics and transcriptomics was conducted.The results indicated that salt stress led to the wilting and darkening of E.ulmoides leaves,accompanied by a decrease in chlorophyll levels,and significantly induced malondialdehyde(MDA)and relative electrical conductivity.During salt stress,most metabolites in the flavonoid biosynthesis pathway of E.ulmoides were upregulated,indicating that flavonoid biosynthesis is likely the main induced pathway under salt stress.Among them,secondary metabolites such as 6-Hydroxyluteolin and Quercetin are likely key metabolites induced by salt stress.The correlation analysis of transcriptomics and metabolomics revealed that EuSHT is a hub gene induced by salt stress,promoting the production of flavonoids such as 6-Hydroxyluteolin.The co-expression network showed a strong positive correlation between EuSHT and the biosynthesis of 6-Hydroxyluteolin and Quercetin,while it exhibited a negative correlation with Catechin biosynthesis.The branches leading to Luteolin and Dihydroquercetin are likely the main pathways for flavonoid compound biosynthesis in the plant stress response during salt stress.The results of this study provided a preliminary mechanism of secondary metabolites such as flavonoids in the medicinal plant E.ulmoides induced by salt stress and provided new theoretical support for discussing the mechanism of plant stress response.It also provided useful information for subsequent exploration of resistance genes in E.ulmoides.展开更多
To ensure the export quality of Eucommia ulmoides leaf extract(ELE)and facilitate E.ulmoides leaf inclusion in the directory of traditional Chinese health foods,an overall safety assessment of ELE was performed,includ...To ensure the export quality of Eucommia ulmoides leaf extract(ELE)and facilitate E.ulmoides leaf inclusion in the directory of traditional Chinese health foods,an overall safety assessment of ELE was performed,including genotoxicity and long-term toxicity,according to the national food safety standards of China.No variations in the reverse mutation number of the nominal bacterial strains were observed under ELE treatment in comparison with the solvent control.Additionally,the micronucleus rates of in vivo mammalian erythrocytes and in vitro mammalian cells under ELE treatment were equivalent to or significantly lower than those of the solvent control.The fold change in the trifluorothymidine resistance mutation frequency of the thymidine kinase gene under ELE treatment was less than three times in comparison with the solvent control,suggesting that ELE did not cause genotoxicity.Moreover,animal experiments showed that the growth performance of rats under ELE treatment was enhanced because the body weights of rats increased.No oxidative injury or inflammatory responses were induced and no histopathological lesions of tissues were detected under ELE treatment.In addition,plasma triglycerides and low-density lipoprotein cholesterol levels significantly decreased,and plasma high-density lipoprotein cholesterol levels significantly increased with ELE treatment,suggesting that ELE was health-promoting.Furthermore,moderate to excellent antimicrobial activities,a favorable anticancer capacity,and superior antioxidant abilities of ELE were found,implying ELE possesses good bioactivities.Therefore,we affirmed ELE is safe to consume as a traditional Chinese health food.展开更多
Adventitious root formation poses a major constraint on the tissue culture and genetic transformation of Eucommia ulmoides.Micrografting offers a new method for the transplantation of genetic transformation,and its su...Adventitious root formation poses a major constraint on the tissue culture and genetic transformation of Eucommia ulmoides.Micrografting offers a new method for the transplantation of genetic transformation,and its success depends on the formation of graft unions.This study used transgenic rootless test-tube seedlings as scions and seedlings from seed as rootstocks during micrografting to avoid the rooting issues that occur during tissue culture and to investigate the role of the EuEG1 gene in the graft healing process.We found that the EuEG1 gene is a vital regulator of graft,and its overexpression contributes to the survival of Eucommia ulmoides micrografting.The EuEG1 gene transgenic plants(TP)used as scions for micrografting presented a significantly higher survival rate than the wild type(WT)and empty vector(EV)regenerated scions.During the grafting healing process,the expression of the EuEG1 gene was higher during the period of callus proliferation,suggesting that the EuEG1 gene was involved in the graft healing process.Histological observation revealed that more calluses tissue appeared at the junction of transgenic scions,and the connection with the rootstock was stronger,which benefits wound healing.These results provide new insights into Eucommia ulmoides micrografting and indicate that the EuEG1 gene can promote wound healing and improve the micrografting survival rate.展开更多
The phytoene desaturase(PDS)encodes a crucial enzyme in the carotenoid biosynthesis pathway.Silencing or inhibiting PDS expression leads to the appearance of mottled,chlorosis,or albino leaves.In this study,the CDS se...The phytoene desaturase(PDS)encodes a crucial enzyme in the carotenoid biosynthesis pathway.Silencing or inhibiting PDS expression leads to the appearance of mottled,chlorosis,or albino leaves.In this study,the CDS sequence of EuPDS(Eucommia ulmoides Phytoene Desaturase)was first cloned and then PDS was silenced in Nicotiana benthamiana.Result showed the expression level of EuPDS in leaves was higher than that in the roots and stems.In N.benthamiana leaves,which were treated by Agrobacterium for 24 h,photo-bleaching was shown on the fresh leaves one week after injection and the transcript level of PDS was down-regulated during the period of emersion.This suggested that EuPDS could silence PDS of N.benthamiana,so as to cause the phenotype of leaf whitening.PDS is the main reporter gene involved in virus-induced gene silencing(VIGS).This study offered molecular evidence for identifying PDS gene involved in Carotenoid’s biosynthesis pathway and the regulation networks in E.ulmides.It also laid a useful foundation for study on leaf discoloration mechanism of other woody plants.展开更多
This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators...This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators with different formulations. For this purpose, we used five formulations of Eucommia ulmoides gum isolators and set different fatigue test methods to study the static and dynamic performance changes of Eucommia ulmoides gum isolators with different formulations by changing the amplitude. The experimental results showed that the addition of Eucommia ulmoides gum had an impact on the performance of the isolator, and the number of fatigue cycles would lead to the hardening of the Eucommia ulmoides gum isolator and changes in its static and dynamic performance. In the range of two million vibrations, the performance change of the isolator was significant in the early stage and then tended to be flat, indicating that the impact of fatigue on the performance of the isolator would not continue to persist. It is worth noting that the study found that the addition of 30% Eucommia ulmoides gum had the least impact on the performance of the isolator under fatigue. Therefore, for long-term use of Eucommia ulmoides gum isolators, attention should be paid to their fatigue characteristics to ensure their stability and reliability. Additionally, this study provides a reference for the design and application of Eucommia ulmoides gum isolators. In summary, this study provides important reference value for a deeper understanding of the fatigue characteristics of Eucommia ulmoides gum isolators and for ensuring their stable and reliable performance. .展开更多
Substitutes of feed antibiotics have been a key research topic in the new stage of animal husbandry.Chinese veterinary medicine refers to decoction pieces and their preparations processed from natural plants,animals,a...Substitutes of feed antibiotics have been a key research topic in the new stage of animal husbandry.Chinese veterinary medicine refers to decoction pieces and their preparations processed from natural plants,animals,and minerals and used for animal disease prevention and improvement of animal production performance under the guidance of Chinese veterinary pharmacy theory.Eucommia ulmoides leaf extract has many active functional components such as chlorogenic acid,E.ulmoides polysaccharides and flavonoids,which have many biological properties such as antibacterial,antioxidant,immune-regulation,sugar ester-and bone metabolism-regulation effects.This paper explored active ingredients and biological properties of E.ulmoides leaf extract,as well as its role and effects in livestock and poultry breeding,providing a scientific basis for the use of E.ulmoides leaves in livestock and poultry breeding.展开更多
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet...The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S-1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S-1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S-2 and S-3 layer, lignification extended to S-1, S-2 and S-3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.展开更多
基金supported by the National Key Research and Development Program of China(2017YFC1600802)Henan Provincial Science and Technology Research Project,China(No.232102110134).
文摘Salt stress inhibits plant growth and affects the biosynthesis of its secondary metabolites.Flavonoids are natural compounds that possess many important biological activities,playing a significant role in the medicinal activity of Eucommia ulmoides(E.ulmoides).To investigate the mechanism by which salt stress affects the biosynthesis of flavonoids in E.ulmoides,a comprehensive analysis of metabolomics and transcriptomics was conducted.The results indicated that salt stress led to the wilting and darkening of E.ulmoides leaves,accompanied by a decrease in chlorophyll levels,and significantly induced malondialdehyde(MDA)and relative electrical conductivity.During salt stress,most metabolites in the flavonoid biosynthesis pathway of E.ulmoides were upregulated,indicating that flavonoid biosynthesis is likely the main induced pathway under salt stress.Among them,secondary metabolites such as 6-Hydroxyluteolin and Quercetin are likely key metabolites induced by salt stress.The correlation analysis of transcriptomics and metabolomics revealed that EuSHT is a hub gene induced by salt stress,promoting the production of flavonoids such as 6-Hydroxyluteolin.The co-expression network showed a strong positive correlation between EuSHT and the biosynthesis of 6-Hydroxyluteolin and Quercetin,while it exhibited a negative correlation with Catechin biosynthesis.The branches leading to Luteolin and Dihydroquercetin are likely the main pathways for flavonoid compound biosynthesis in the plant stress response during salt stress.The results of this study provided a preliminary mechanism of secondary metabolites such as flavonoids in the medicinal plant E.ulmoides induced by salt stress and provided new theoretical support for discussing the mechanism of plant stress response.It also provided useful information for subsequent exploration of resistance genes in E.ulmoides.
基金This study was supported by the National Natural Science Foundation of China(Grant No.42107020)the Scientific Research Start Funds,Hunan Institute of Technology(No.HQ20014)。
文摘To ensure the export quality of Eucommia ulmoides leaf extract(ELE)and facilitate E.ulmoides leaf inclusion in the directory of traditional Chinese health foods,an overall safety assessment of ELE was performed,including genotoxicity and long-term toxicity,according to the national food safety standards of China.No variations in the reverse mutation number of the nominal bacterial strains were observed under ELE treatment in comparison with the solvent control.Additionally,the micronucleus rates of in vivo mammalian erythrocytes and in vitro mammalian cells under ELE treatment were equivalent to or significantly lower than those of the solvent control.The fold change in the trifluorothymidine resistance mutation frequency of the thymidine kinase gene under ELE treatment was less than three times in comparison with the solvent control,suggesting that ELE did not cause genotoxicity.Moreover,animal experiments showed that the growth performance of rats under ELE treatment was enhanced because the body weights of rats increased.No oxidative injury or inflammatory responses were induced and no histopathological lesions of tissues were detected under ELE treatment.In addition,plasma triglycerides and low-density lipoprotein cholesterol levels significantly decreased,and plasma high-density lipoprotein cholesterol levels significantly increased with ELE treatment,suggesting that ELE was health-promoting.Furthermore,moderate to excellent antimicrobial activities,a favorable anticancer capacity,and superior antioxidant abilities of ELE were found,implying ELE possesses good bioactivities.Therefore,we affirmed ELE is safe to consume as a traditional Chinese health food.
基金y National Natural Science Foundation of China,Grant Number 31870285Talent Special Project of Guizhou Academy of Agricultural Sciences,Grant Number 2022-02Talent Base for Germplasm Resources Utilization and Innovation of Characteristic Plant in Guizhou,Grant Number RCJD2018–14.
文摘Adventitious root formation poses a major constraint on the tissue culture and genetic transformation of Eucommia ulmoides.Micrografting offers a new method for the transplantation of genetic transformation,and its success depends on the formation of graft unions.This study used transgenic rootless test-tube seedlings as scions and seedlings from seed as rootstocks during micrografting to avoid the rooting issues that occur during tissue culture and to investigate the role of the EuEG1 gene in the graft healing process.We found that the EuEG1 gene is a vital regulator of graft,and its overexpression contributes to the survival of Eucommia ulmoides micrografting.The EuEG1 gene transgenic plants(TP)used as scions for micrografting presented a significantly higher survival rate than the wild type(WT)and empty vector(EV)regenerated scions.During the grafting healing process,the expression of the EuEG1 gene was higher during the period of callus proliferation,suggesting that the EuEG1 gene was involved in the graft healing process.Histological observation revealed that more calluses tissue appeared at the junction of transgenic scions,and the connection with the rootstock was stronger,which benefits wound healing.These results provide new insights into Eucommia ulmoides micrografting and indicate that the EuEG1 gene can promote wound healing and improve the micrografting survival rate.
基金This study was funded by the National Natural Science Foundation of China(Nos.31870285,31660076&32160384)the Open Fund for Key Laboratory of Ministry of Education and Science(No.KY[2022]366)Guizhou Province High-Level Innovative Talent Training Program Project(No.[2016]4003).
文摘The phytoene desaturase(PDS)encodes a crucial enzyme in the carotenoid biosynthesis pathway.Silencing or inhibiting PDS expression leads to the appearance of mottled,chlorosis,or albino leaves.In this study,the CDS sequence of EuPDS(Eucommia ulmoides Phytoene Desaturase)was first cloned and then PDS was silenced in Nicotiana benthamiana.Result showed the expression level of EuPDS in leaves was higher than that in the roots and stems.In N.benthamiana leaves,which were treated by Agrobacterium for 24 h,photo-bleaching was shown on the fresh leaves one week after injection and the transcript level of PDS was down-regulated during the period of emersion.This suggested that EuPDS could silence PDS of N.benthamiana,so as to cause the phenotype of leaf whitening.PDS is the main reporter gene involved in virus-induced gene silencing(VIGS).This study offered molecular evidence for identifying PDS gene involved in Carotenoid’s biosynthesis pathway and the regulation networks in E.ulmides.It also laid a useful foundation for study on leaf discoloration mechanism of other woody plants.
文摘This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators with different formulations. For this purpose, we used five formulations of Eucommia ulmoides gum isolators and set different fatigue test methods to study the static and dynamic performance changes of Eucommia ulmoides gum isolators with different formulations by changing the amplitude. The experimental results showed that the addition of Eucommia ulmoides gum had an impact on the performance of the isolator, and the number of fatigue cycles would lead to the hardening of the Eucommia ulmoides gum isolator and changes in its static and dynamic performance. In the range of two million vibrations, the performance change of the isolator was significant in the early stage and then tended to be flat, indicating that the impact of fatigue on the performance of the isolator would not continue to persist. It is worth noting that the study found that the addition of 30% Eucommia ulmoides gum had the least impact on the performance of the isolator under fatigue. Therefore, for long-term use of Eucommia ulmoides gum isolators, attention should be paid to their fatigue characteristics to ensure their stability and reliability. Additionally, this study provides a reference for the design and application of Eucommia ulmoides gum isolators. In summary, this study provides important reference value for a deeper understanding of the fatigue characteristics of Eucommia ulmoides gum isolators and for ensuring their stable and reliable performance. .
基金Supported by Agricultural Society Field Science and Technology Innovation Policy Guidance Program of Binzhou City (2023KTPY001).
文摘Substitutes of feed antibiotics have been a key research topic in the new stage of animal husbandry.Chinese veterinary medicine refers to decoction pieces and their preparations processed from natural plants,animals,and minerals and used for animal disease prevention and improvement of animal production performance under the guidance of Chinese veterinary pharmacy theory.Eucommia ulmoides leaf extract has many active functional components such as chlorogenic acid,E.ulmoides polysaccharides and flavonoids,which have many biological properties such as antibacterial,antioxidant,immune-regulation,sugar ester-and bone metabolism-regulation effects.This paper explored active ingredients and biological properties of E.ulmoides leaf extract,as well as its role and effects in livestock and poultry breeding,providing a scientific basis for the use of E.ulmoides leaves in livestock and poultry breeding.
文摘为探究蒸汽爆破(汽爆)辅助加工制成杜仲叶茶的挥发性成分差异和主要呈香特征,以杜仲‘华仲8号’嫩叶和成熟叶为对象,采用汽爆技术对杜仲叶进行处理,基于电子鼻和顶空固相微萃取-气相色谱-质谱(headspace solid-phase microextraction combined with gas chromatography-mass spectrometry,HS-SPME-GC-MS)联用法解析汽爆对两种杜仲茶香气特征的影响。主成分分析和线性判别分析对电子鼻数据模型拟合度高,杜仲嫩叶和成熟叶茶汽爆前后香气特征均存在显著差异。HS-SPME-GC-MS检测共鉴定出177种挥发性成分,通过正交偏最小二乘判别分析(变量重要性投影值≥1)以及Kruskal-WallisH检验(P<0.05)进一步筛选出24种香气物质,发现汽爆前嫩叶茶关键香气物质为二氢猕猴桃内酯。汽爆后嫩叶茶关键呈香物质在此基础上增加了壬醛、苯甲醛和苯乙醛,呈现柑橘香、花香、焦糖香、苦杏仁味、坚果香、玫瑰香和巧克力香。汽爆前成熟叶茶无关键香气物质,汽爆后成熟叶茶关键香气物质为二氢猕猴桃内酯和壬醛,呈现甜桃香、木香、柑橘香、花香和焦糖香。研究结果可为开发杜仲叶茶饮品提供参考依据。
文摘The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S-1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S-1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S-2 and S-3 layer, lignification extended to S-1, S-2 and S-3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.