Viruses are representative of a global threat to agricultural production. Genetic resistance is the preferred strategy for the control of viral infection and against loss of crop yield. Viral protein synthesis require...Viruses are representative of a global threat to agricultural production. Genetic resistance is the preferred strategy for the control of viral infection and against loss of crop yield. Viral protein synthesis requires host cellular factors for translating their viral RNAs, and for regulating their replication and cell to cell systemic movement. Therefore, the viruses are dependent on cellular translation factors. Mutations in the gene encoding eIF4E and eIF4G or their isoforms, eIFiso4 E, eIFiso4 G and eIF2Bβ have been mapped as a source of plant potyvirus while other genus of plant virus recessive resistance genes in many species are originated from these loci. Some of other plant translation factors, such as eIF3,eIF4 A-like helicases, eEF1A and eEF1B, which are required in interacting with viral RNAs and regulating various aspects of the infection cycle,have also been identified. Here, we summarized the mechanisms utilized by RNA viruses of eukaryotic plants and the essential roles of e IFs in virus infection. Moreover, we discussed the potential of e IFs as a target gene in the development of genetic resistance to viruses for crop improvement. This review highlighted newly revealed examples of abnormal translational strategies and provided insights into natural host resistance mechanisms that have been linked to 3 cap-independent translational enhancer activity.展开更多
Objective Cisplatin(CDDP)-based chemotherapy is a first-line,drug regimen for muscle-invasive bladder cancer(BC)and metastatic bladder cancer.Clinically,resistance to CDDP restricts the clinical benefit of some bladde...Objective Cisplatin(CDDP)-based chemotherapy is a first-line,drug regimen for muscle-invasive bladder cancer(BC)and metastatic bladder cancer.Clinically,resistance to CDDP restricts the clinical benefit of some bladder cancer patients.AT-rich interaction domain 1A(ARID1A)gene mutation occurs frequently in bladder cancer;however,the role of CDDP sensitivity in BC has not been studied.Methods We established ARID1A knockout BC cell lines using CRISPR/Cas9 technology.IC50 determination,flow cytometry analysis of apoptosis,and tumor xenograft assays were performed to verify changes in the CDDP sensitivity of BC cells losing ARID1A.qRT-PCR,Western blotting,RNA interference,bioinformatic analysis,and ChIP-qPCR analysis were performed to further explore the potential mechanism of ARID1A inactivation in CDDP sensitivity in BC.Results It was found that ARID1A inactivation was associated with CDDP resistance in BC cells.Mechanically,loss of ARID1A promoted the expression of eukaryotic translation initiation factor 4A3(EIF4A3)through epigenetic regulation.Increased expression of EIF4A3 promoted the expression of hsa_circ_0008399(circ0008399),a novel circular RNA(circRNA)identified in our previous study,which,to some extent,showed that ARID1A deletion caused CDDP resistance through the inhibitory effect of circ0008399 on the apoptosis of BC cells.Importantly,EIF4A3-IN-2 specifically inhibited the activity of EIF4A3 to reduce circ0008399 production and restored the sensitivity of ARID1A inactivated BC cells to CDDP.Conclusion Our research deepens the understanding of the mechanisms of CDDP resistance in BC and elucidates a potential strategy to improve the efficacy of CDDP in BC patients with ARID1A deletion through combination therapy targeting EIF4A3.展开更多
Eukaryotic initiation factor subunit c(eIF3c) has been identified as an oncogene that is over-expressed in tumor cells and,therefore,is a potential therapeutic target for gene-based cancer treatment.This study was foc...Eukaryotic initiation factor subunit c(eIF3c) has been identified as an oncogene that is over-expressed in tumor cells and,therefore,is a potential therapeutic target for gene-based cancer treatment.This study was focused on investigating the effect of small interfering RNA(siRNA)-mediated eIF3c gene knockdown on colon cancer cell survival.The eIF3c gene was observed to be highly expressed in colon cancer cell models.The expression levels of the gene in eIF3c siRNA infected and control siRNA infected cells were compared via real-time polymerase chain reaction(PCR) and western blotting analysis.Cell proliferation levels were analyzed employing 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium bromide(MTT) and colony formation assays.Furthermore,the effects of eIF3c gene knockdown on the cell cycle and apoptosis were analyzed using flow cytometry.The results showed that suppression of eIF3c expression significantly(P<0.001) reduced cell proliferation and colony formation of RKO colon cancer cells.The cell cycle was arrested by decreasing the number of cells entering S phase.Further,apoptosis was induced as a result of eIF3c knockdown.Collectively,eIF3c deletion effectively reduced the survival of colon cancer cells and could be used as a therapeutic tool for colon cancer therapy.展开更多
基金The authors thank Mr.Tomas Maher from the Department of Biology at the Pennsylvania State University for language editing.This work is supported by the National Natural Science Foundation of Zhejiang Province(Grant No.LZ20C150002)and the National Natural Science Foundation of China(Grant No.31872095).
文摘Viruses are representative of a global threat to agricultural production. Genetic resistance is the preferred strategy for the control of viral infection and against loss of crop yield. Viral protein synthesis requires host cellular factors for translating their viral RNAs, and for regulating their replication and cell to cell systemic movement. Therefore, the viruses are dependent on cellular translation factors. Mutations in the gene encoding eIF4E and eIF4G or their isoforms, eIFiso4 E, eIFiso4 G and eIF2Bβ have been mapped as a source of plant potyvirus while other genus of plant virus recessive resistance genes in many species are originated from these loci. Some of other plant translation factors, such as eIF3,eIF4 A-like helicases, eEF1A and eEF1B, which are required in interacting with viral RNAs and regulating various aspects of the infection cycle,have also been identified. Here, we summarized the mechanisms utilized by RNA viruses of eukaryotic plants and the essential roles of e IFs in virus infection. Moreover, we discussed the potential of e IFs as a target gene in the development of genetic resistance to viruses for crop improvement. This review highlighted newly revealed examples of abnormal translational strategies and provided insights into natural host resistance mechanisms that have been linked to 3 cap-independent translational enhancer activity.
基金This work was supported by grants from the National Natural Science Foundation of China(No.81974396,No.81874091,No.82072840,and No.82102734)the Natural Science Foundation of Hubei Province(No.2020CFB829)the Health Commission of Hubei Province Scientific Research Project(No.WJ2021F081).
文摘Objective Cisplatin(CDDP)-based chemotherapy is a first-line,drug regimen for muscle-invasive bladder cancer(BC)and metastatic bladder cancer.Clinically,resistance to CDDP restricts the clinical benefit of some bladder cancer patients.AT-rich interaction domain 1A(ARID1A)gene mutation occurs frequently in bladder cancer;however,the role of CDDP sensitivity in BC has not been studied.Methods We established ARID1A knockout BC cell lines using CRISPR/Cas9 technology.IC50 determination,flow cytometry analysis of apoptosis,and tumor xenograft assays were performed to verify changes in the CDDP sensitivity of BC cells losing ARID1A.qRT-PCR,Western blotting,RNA interference,bioinformatic analysis,and ChIP-qPCR analysis were performed to further explore the potential mechanism of ARID1A inactivation in CDDP sensitivity in BC.Results It was found that ARID1A inactivation was associated with CDDP resistance in BC cells.Mechanically,loss of ARID1A promoted the expression of eukaryotic translation initiation factor 4A3(EIF4A3)through epigenetic regulation.Increased expression of EIF4A3 promoted the expression of hsa_circ_0008399(circ0008399),a novel circular RNA(circRNA)identified in our previous study,which,to some extent,showed that ARID1A deletion caused CDDP resistance through the inhibitory effect of circ0008399 on the apoptosis of BC cells.Importantly,EIF4A3-IN-2 specifically inhibited the activity of EIF4A3 to reduce circ0008399 production and restored the sensitivity of ARID1A inactivated BC cells to CDDP.Conclusion Our research deepens the understanding of the mechanisms of CDDP resistance in BC and elucidates a potential strategy to improve the efficacy of CDDP in BC patients with ARID1A deletion through combination therapy targeting EIF4A3.
文摘Eukaryotic initiation factor subunit c(eIF3c) has been identified as an oncogene that is over-expressed in tumor cells and,therefore,is a potential therapeutic target for gene-based cancer treatment.This study was focused on investigating the effect of small interfering RNA(siRNA)-mediated eIF3c gene knockdown on colon cancer cell survival.The eIF3c gene was observed to be highly expressed in colon cancer cell models.The expression levels of the gene in eIF3c siRNA infected and control siRNA infected cells were compared via real-time polymerase chain reaction(PCR) and western blotting analysis.Cell proliferation levels were analyzed employing 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium bromide(MTT) and colony formation assays.Furthermore,the effects of eIF3c gene knockdown on the cell cycle and apoptosis were analyzed using flow cytometry.The results showed that suppression of eIF3c expression significantly(P<0.001) reduced cell proliferation and colony formation of RKO colon cancer cells.The cell cycle was arrested by decreasing the number of cells entering S phase.Further,apoptosis was induced as a result of eIF3c knockdown.Collectively,eIF3c deletion effectively reduced the survival of colon cancer cells and could be used as a therapeutic tool for colon cancer therapy.