The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM ap...The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM approach is the attenuated validity in the dense spray, where the bulk liquid disintegrates into droplets. There the assumption of single droplets surrounded by a homogenous gas field is not reasonable. In this region, the Eulerian-Eulerian multi-phase approach performs better because instead of parcels the spray is represented by the volume fractions of one bulk liquid and several droplet size class phases. A further drawback of the DDM approach is that increasing the spatial resolution of the computational grid leads to a reduced statistical convergence, since the number of spray parcels per computational cell becomes smaller. It is desirable to combine the benefits of both spray approaches in coupled CFD simulations. Therefore, the dense spray region is simulated separately with the Eulerian spray approach on a highly resolved mesh covering only the region close to the nozzle orifice. The entire engine domain with combustion and emission models is simulated with the Eulerian-Lagrangian spray approach for the dilute spray region. The two simulations are coupled through exchange of boundary conditions and model source terms. An on-line coupling interface manages the data transfer between the two simulation clients, i.e., Eulerian spray and engine client. The aim of this work is to extend the coupled spray approach in terms of exchanging combustion related heat and species sources, and consequently creating the link between Eulerian spray and combustion models. The results show mixture formation and combustion in real-case engine simulations, and demonstrate the feasibility of spray model combination in engineering applications.展开更多
Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling i...Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.展开更多
The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are us...The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are used. One is the conjugate code method-direct approach, and another is the numerical backward integration of analytical adjoint equation—indirect approach. Theoretical derivation and sensitivity tests are conducted in order to verify the consistency and inconsistency of the two algorithms under the semi-Lagrangian framework. On the other hand, the sensitivity of the perfect and imperfect initial condition is also tested in both direct and indirect approaches. Our research has shown that the two algorithms are not only identical in theory, but also identical in numerical calculation. Furthermore, the algorithms of the indirect approach are much more feasible and efficient than that of the direct one when both are employed in the semi-Lagrangian framework. Taking advantage of semi-Lagrangian framework, one purpose of this paper is to illustrate when the variational assimilation algorithm is concerned in the computational method of the backward integration, the algorithm is extremely facilitated. Such simplicity in indirect approach should be meaningful for the VAR design in passive model. Indeed, if one can successfully split the diabatic and adiabatic process, the algorithms represented in this paper might be easily used in a more general vision of atmospheric model.展开更多
文摘The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM approach is the attenuated validity in the dense spray, where the bulk liquid disintegrates into droplets. There the assumption of single droplets surrounded by a homogenous gas field is not reasonable. In this region, the Eulerian-Eulerian multi-phase approach performs better because instead of parcels the spray is represented by the volume fractions of one bulk liquid and several droplet size class phases. A further drawback of the DDM approach is that increasing the spatial resolution of the computational grid leads to a reduced statistical convergence, since the number of spray parcels per computational cell becomes smaller. It is desirable to combine the benefits of both spray approaches in coupled CFD simulations. Therefore, the dense spray region is simulated separately with the Eulerian spray approach on a highly resolved mesh covering only the region close to the nozzle orifice. The entire engine domain with combustion and emission models is simulated with the Eulerian-Lagrangian spray approach for the dilute spray region. The two simulations are coupled through exchange of boundary conditions and model source terms. An on-line coupling interface manages the data transfer between the two simulation clients, i.e., Eulerian spray and engine client. The aim of this work is to extend the coupled spray approach in terms of exchanging combustion related heat and species sources, and consequently creating the link between Eulerian spray and combustion models. The results show mixture formation and combustion in real-case engine simulations, and demonstrate the feasibility of spray model combination in engineering applications.
基金Project(2012-Z05)supported by the State Key Laboratory of Robotics,ChinaProjects(61233013,51179183)supported by the National Natural Science Foundation of China
文摘Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.
文摘The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are used. One is the conjugate code method-direct approach, and another is the numerical backward integration of analytical adjoint equation—indirect approach. Theoretical derivation and sensitivity tests are conducted in order to verify the consistency and inconsistency of the two algorithms under the semi-Lagrangian framework. On the other hand, the sensitivity of the perfect and imperfect initial condition is also tested in both direct and indirect approaches. Our research has shown that the two algorithms are not only identical in theory, but also identical in numerical calculation. Furthermore, the algorithms of the indirect approach are much more feasible and efficient than that of the direct one when both are employed in the semi-Lagrangian framework. Taking advantage of semi-Lagrangian framework, one purpose of this paper is to illustrate when the variational assimilation algorithm is concerned in the computational method of the backward integration, the algorithm is extremely facilitated. Such simplicity in indirect approach should be meaningful for the VAR design in passive model. Indeed, if one can successfully split the diabatic and adiabatic process, the algorithms represented in this paper might be easily used in a more general vision of atmospheric model.