In this paper, the definitons of both higher-order multivariable Euler's numbersand polynomial. higher-order multivariable Bernoulli's numbers and polynomial aregiven and some of their important properties...In this paper, the definitons of both higher-order multivariable Euler's numbersand polynomial. higher-order multivariable Bernoulli's numbers and polynomial aregiven and some of their important properties are expounded. As a result, themathematical relationship between higher-order multivariable Euler's polynomial(numbers) and higher-order higher -order Bernoulli's polynomial (numbers) are thusobtained.展开更多
In contrast to the Euler method and the subsequent methods, we provide solutions to nonlinear ordinary differential equations. Consequently, our method does not require convergence. We apply our method to a second-ord...In contrast to the Euler method and the subsequent methods, we provide solutions to nonlinear ordinary differential equations. Consequently, our method does not require convergence. We apply our method to a second-order nonlinear ordinary differential equation ODE. However, the method is applicable to higher order ODEs.展开更多
文摘In this paper, the definitons of both higher-order multivariable Euler's numbersand polynomial. higher-order multivariable Bernoulli's numbers and polynomial aregiven and some of their important properties are expounded. As a result, themathematical relationship between higher-order multivariable Euler's polynomial(numbers) and higher-order higher -order Bernoulli's polynomial (numbers) are thusobtained.
文摘In contrast to the Euler method and the subsequent methods, we provide solutions to nonlinear ordinary differential equations. Consequently, our method does not require convergence. We apply our method to a second-order nonlinear ordinary differential equation ODE. However, the method is applicable to higher order ODEs.