Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagra...Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagrange equation,the fractional Birkhoff equations as well as the fractional conservation laws for the two systems are listed.Secondly,the definition of adiabatic invariant for fractional mechanical system is given,then perturbation to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional Birkhoffian system under the special and general infinitesimal transformations,respectively.Finally,two examples are devoted to illustrate the results.展开更多
Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system...Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.展开更多
基于欧拉-拉格朗日(Euler Lagrange-EL)模型的有源电力滤波器(Active Power Filter-APF)无源性控制中将对负载谐波电流的跟踪转换为对系统电源电流的控制,降低了控制器的跟踪难度。针对已有的APF无源性控制文献在设计系统电源电流期望...基于欧拉-拉格朗日(Euler Lagrange-EL)模型的有源电力滤波器(Active Power Filter-APF)无源性控制中将对负载谐波电流的跟踪转换为对系统电源电流的控制,降低了控制器的跟踪难度。针对已有的APF无源性控制文献在设计系统电源电流期望平衡点时需要提取负载有功电流,指出负载有功电流只是APF直流侧电压闭环的一个前馈信号,提出一种改进的无需检测负载有功电流的基于EL模型的APF无源性控制方法,在降低控制器算法复杂程度的同时去掉负载有功电流提取算法中数字低通滤波器(Low Pass Filter-LPF)带来的延时。仿真和实验证明了方法的有效性。展开更多
The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The ma...The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself.展开更多
基金supported by the National Natural Science Foundation of China (Nos.11272227,11572212)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(No.KYLX15_0405)
文摘Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagrange equation,the fractional Birkhoff equations as well as the fractional conservation laws for the two systems are listed.Secondly,the definition of adiabatic invariant for fractional mechanical system is given,then perturbation to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional Birkhoffian system under the special and general infinitesimal transformations,respectively.Finally,two examples are devoted to illustrate the results.
基金supported by the Chinese Scholarship Council(CSC)(No.201806340074)Shenzhen Clean Energy Research Institute and National Natural Science Foundation of China(No.12005141)+3 种基金supported by the US Department of Energy(No.DE-AC02-09CH11466)supported by the National MC Energy R&D Program(No.2018YFE0304100)National Key Research and Development Program(Nos.2016YFA0400600,2016YFA0400601 and 2016YFA0400602)the National Natural Science Foundation of China(Nos.11905220 and 11805273)。
文摘Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.
文摘The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself.