We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by sol...We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh.When the evolution step is complete,the grid points are redistributed according to the moving mesh differential equation.Finally,the evolved solution is projected onto the new mesh in a conservative manner.The resulting adaptive moving mesh methods are applied to the one-and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems.Our numerical results demonstrate that in both cases,the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.展开更多
We construct new fifth-order alternative WENO(A-WENO)schemes for the Euler equations of gas dynamics.The new scheme is based on a new adaptive diffusion centralupwind Rankine-Hugoniot(CURH)numerical flux.The CURH nume...We construct new fifth-order alternative WENO(A-WENO)schemes for the Euler equations of gas dynamics.The new scheme is based on a new adaptive diffusion centralupwind Rankine-Hugoniot(CURH)numerical flux.The CURH numerical fluxes have been recently proposed in[Garg et al.J Comput Phys 428,2021]in the context of secondorder semi-discrete finite-volume methods.The proposed adaptive diffusion CURH flux contains a smaller amount of numerical dissipation compared with the adaptive diffusion central numerical flux,which was also developed with the help of the discrete RankineHugoniot conditions and used in the fifth-order A-WENO scheme recently introduced in[Wang et al.SIAM J Sci Comput 42,2020].As in that work,we here use the fifth-order characteristic-wise WENO-Z interpolations to evaluate the fifth-order point values required by the numerical fluxes.The resulting one-and two-dimensional schemes are tested on a number of numerical examples,which clearly demonstrate that the new schemes outperform the existing fifth-order A-WENO schemes without compromising the robustness.展开更多
In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the f...In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the flux perturbation vanishes,they converge to the delta-shock and vacuum state solutions of the zero-pressure flow,respectively.Secondly,we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure.Furthermore,we rigorously prove that,as the two-parameter flux perturbation vanishes,any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow;any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Finally,numerical results are given to present the formation processes of delta shock waves and vacuum states.展开更多
In this paper,we describe how to construct a finite-difference shockcapturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domainΩ,possibly with moving boundary...In this paper,we describe how to construct a finite-difference shockcapturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domainΩ,possibly with moving boundary.The boundaries of the domain are assumed to be changing due to the movement of solid objects/obstacles/walls.Although the motion of the boundary could be coupled with the fluid,all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow.The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domainΩ_(R)⊃Ω.Ωe identify inner and ghost points.The inner points are the grid points located insideΩ,while the ghost points are the grid points that are outsideΩbut have at least one neighbor insideΩ.The evolution equations for inner points data are obtained from the discretization of the governing equation,while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables(density,velocities and pressure).Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains.Several numerical experiments are conducted to illustrate the validity of themethod.Ωe demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.展开更多
基金The work of A.Kurganov was supported in part by the National Natural Science Foundation of China grant 11771201by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001).
文摘We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh.When the evolution step is complete,the grid points are redistributed according to the moving mesh differential equation.Finally,the evolved solution is projected onto the new mesh in a conservative manner.The resulting adaptive moving mesh methods are applied to the one-and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems.Our numerical results demonstrate that in both cases,the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.
基金The work of B.S.Wang and W.S.Don was partially supported by the Ocean University of China through grant 201712011The work of A.Kurganov was supported in part by NSFC grants 11771201 and 1201101343by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001).
文摘We construct new fifth-order alternative WENO(A-WENO)schemes for the Euler equations of gas dynamics.The new scheme is based on a new adaptive diffusion centralupwind Rankine-Hugoniot(CURH)numerical flux.The CURH numerical fluxes have been recently proposed in[Garg et al.J Comput Phys 428,2021]in the context of secondorder semi-discrete finite-volume methods.The proposed adaptive diffusion CURH flux contains a smaller amount of numerical dissipation compared with the adaptive diffusion central numerical flux,which was also developed with the help of the discrete RankineHugoniot conditions and used in the fifth-order A-WENO scheme recently introduced in[Wang et al.SIAM J Sci Comput 42,2020].As in that work,we here use the fifth-order characteristic-wise WENO-Z interpolations to evaluate the fifth-order point values required by the numerical fluxes.The resulting one-and two-dimensional schemes are tested on a number of numerical examples,which clearly demonstrate that the new schemes outperform the existing fifth-order A-WENO schemes without compromising the robustness.
基金supported by National Natural Science Foundation of China(Grant No.11361073)
文摘In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the flux perturbation vanishes,they converge to the delta-shock and vacuum state solutions of the zero-pressure flow,respectively.Secondly,we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure.Furthermore,we rigorously prove that,as the two-parameter flux perturbation vanishes,any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow;any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Finally,numerical results are given to present the formation processes of delta shock waves and vacuum states.
基金The work of A.Chertock was supported in part by the NSF Grants DMS-1216974 and DMS-1521051The work of A.Kurganov was supported in part by the NSF Grants DMS-1216957 and DMS-1521009The work of G.Russo was supported partially by the University of Catania,Project F.I.R.Charge Transport in Graphene and Low Dimensional Systems,and partially by ITN-ETN Horizon 2020 Project Mod Comp Shock,Modeling and Computation on Shocks and Interfaces,Project Reference 642768.
文摘In this paper,we describe how to construct a finite-difference shockcapturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domainΩ,possibly with moving boundary.The boundaries of the domain are assumed to be changing due to the movement of solid objects/obstacles/walls.Although the motion of the boundary could be coupled with the fluid,all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow.The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domainΩ_(R)⊃Ω.Ωe identify inner and ghost points.The inner points are the grid points located insideΩ,while the ghost points are the grid points that are outsideΩbut have at least one neighbor insideΩ.The evolution equations for inner points data are obtained from the discretization of the governing equation,while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables(density,velocities and pressure).Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains.Several numerical experiments are conducted to illustrate the validity of themethod.Ωe demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.