We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separat...We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of ...We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of satisfying the over-compressing entropy condition:(i)there is a unique delta shock solution,corresponding to the case that has two strong classical Lax shocks;(ii)for the initial data that the classical Riemann solution contains a shock wave and a rarefaction wave,or two shocks with one being weak,there are infinitely many solutions,each consists of a delta shock and a rarefaction wave;(iii)there are no delta shocks for the case that the classical entropy weak solutions consist only of rarefaction waves.These solutions are self-similar.Furthermore,for the generalized Riemann problem with mass concentrated initially at the discontinuous point of initial data,there always exists a unique delta shock for at least a short time.It could be prolonged to a global solution.Not all the solutions are self-similar due to the initial velocity of the concentrated point-mass(particle).Whether the delta shock solutions constructed satisfy the over-compressing entropy condition is clarified.This is the first result on the construction of singular measure solutions to the compressible Euler system of polytropic gases,that is strictly hyperbolic,and whose characteristics are both genuinely nonlinear.We also discuss possible physical interpretations and applications of these new solutions.展开更多
In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in ...In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.展开更多
This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensiona...This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensional(3-D)steady Euler equations can be projected onto the unit sphere and the state of fluid can be characterized by the polar and azimuthal angles.Given a segment smooth curve as a conical-sonic line in the polar-azimuthal angle plane,we construct a classical conical-supersonic solution near the curve under some reasonable assumptions.To overcome the difficulty caused by the parabolic degeneracy,we apply the characteristic decomposition technique to transform the Euler equations into a new degenerate hyperbolic system in a partial hodograph plane.The singular terms are isolated from the highly nonlinear complicated system and then can be handled successfully.We establish a smooth local solution to the new system in a suitable weighted metric space and then express the solution in terms of the original variables.展开更多
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.展开更多
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based...Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.展开更多
An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed.The numerical scheme is explicit in time and the approximation in space is done with continuou...An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed.The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements.The method is made invar-iant domain preserving for the Euler equations using convex limiting and is tested on vari-ous benchmarks.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
基金supported by the National Natural Science Foundation of China(11871218,12071298)in part by the Science and Technology Commission of Shanghai Municipality(21JC1402500,22DZ2229014)。
文摘We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
基金supported by the National Natural Science Foundation of China under Grants No.11871218,No.12071298the Science and Technology Commission of Shanghai Municipality under Grant No.18dz2271000.
文摘We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of satisfying the over-compressing entropy condition:(i)there is a unique delta shock solution,corresponding to the case that has two strong classical Lax shocks;(ii)for the initial data that the classical Riemann solution contains a shock wave and a rarefaction wave,or two shocks with one being weak,there are infinitely many solutions,each consists of a delta shock and a rarefaction wave;(iii)there are no delta shocks for the case that the classical entropy weak solutions consist only of rarefaction waves.These solutions are self-similar.Furthermore,for the generalized Riemann problem with mass concentrated initially at the discontinuous point of initial data,there always exists a unique delta shock for at least a short time.It could be prolonged to a global solution.Not all the solutions are self-similar due to the initial velocity of the concentrated point-mass(particle).Whether the delta shock solutions constructed satisfy the over-compressing entropy condition is clarified.This is the first result on the construction of singular measure solutions to the compressible Euler system of polytropic gases,that is strictly hyperbolic,and whose characteristics are both genuinely nonlinear.We also discuss possible physical interpretations and applications of these new solutions.
基金the Scientific Research Fund of Beijing Normal University(Grant No.28704-111032105)the Start-up Research Fund from BNU-HKBU United International College(Grant No.R72021112)+2 种基金The research of Guanghui Hu was partially supported by the FDCT of the Macao S.A.R.(0082/2020/A2)the National Natural Science Foundation of China(Grant Nos.11922120,11871489)the Multi-Year Research Grant(2019-00154-FST)of University of Macao,and a Grant from Department of Science and Technology of Guangdong Province(2020B1212030001).
文摘In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.
基金the two referees for very helpful comments and suggestions to improve the quality of the paper.This work was partially supported by the Natural Science Foundation of Zhejiang province of China(LY21A010017)the National Natural Science Foundation of China(12071106,12171130).
文摘This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensional(3-D)steady Euler equations can be projected onto the unit sphere and the state of fluid can be characterized by the polar and azimuthal angles.Given a segment smooth curve as a conical-sonic line in the polar-azimuthal angle plane,we construct a classical conical-supersonic solution near the curve under some reasonable assumptions.To overcome the difficulty caused by the parabolic degeneracy,we apply the characteristic decomposition technique to transform the Euler equations into a new degenerate hyperbolic system in a partial hodograph plane.The singular terms are isolated from the highly nonlinear complicated system and then can be handled successfully.We establish a smooth local solution to the new system in a suitable weighted metric space and then express the solution in terms of the original variables.
文摘This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)。
文摘Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.
基金supported in part by a“Computational R&D in Support of Stockpile Stewardship”Grant from Lawrence Livermore National Laboratorythe National Science Foundation Grants DMS-1619892+2 种基金the Air Force Office of Scientifc Research,USAF,under Grant/contract number FA9955012-0358the Army Research Office under Grant/contract number W911NF-15-1-0517the Spanish MCINN under Project PGC2018-097565-B-I00
文摘An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed.The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements.The method is made invar-iant domain preserving for the Euler equations using convex limiting and is tested on vari-ous benchmarks.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.