In two centuries ago, Ming Autu discovered the famous Catalan numbers while he tried to expand the function sin(2px) as power series of sin(x) for the case p = 1, 2, 3. Very recently, P. J. Larcombe shows that for any...In two centuries ago, Ming Autu discovered the famous Catalan numbers while he tried to expand the function sin(2px) as power series of sin(x) for the case p = 1, 2, 3. Very recently, P. J. Larcombe shows that for any p, sin(2px) can always be expressed as an infinite power series of sin(x) involving precise combinations of Catalan numbers as part of all but the initial p terms and gave all expansions for the case p = 4, 5. The present paper presents the desired expansion for arbitrary integer p.展开更多
In this paper, we mainly consider proximal subdifferentials of lower semicontinuous functions defined on real Hilbert space and Clarke's subdifferentials of locally Lipschitzian functions defined on Banach space resp...In this paper, we mainly consider proximal subdifferentials of lower semicontinuous functions defined on real Hilbert space and Clarke's subdifferentials of locally Lipschitzian functions defined on Banach space respectively, and obtain the generalized Euler identity of homogenous functions. Then, by introducing a multifunction F, we extend the smoothness of sphere and differentiability of norm function in Banach space.展开更多
文摘In two centuries ago, Ming Autu discovered the famous Catalan numbers while he tried to expand the function sin(2px) as power series of sin(x) for the case p = 1, 2, 3. Very recently, P. J. Larcombe shows that for any p, sin(2px) can always be expressed as an infinite power series of sin(x) involving precise combinations of Catalan numbers as part of all but the initial p terms and gave all expansions for the case p = 4, 5. The present paper presents the desired expansion for arbitrary integer p.
基金Supported by Natural Science Foundation of Yunnan University (Grant No. 2007Z005C)National Natural Science Foundation of China (Grant No. 10761012)
文摘In this paper, we mainly consider proximal subdifferentials of lower semicontinuous functions defined on real Hilbert space and Clarke's subdifferentials of locally Lipschitzian functions defined on Banach space respectively, and obtain the generalized Euler identity of homogenous functions. Then, by introducing a multifunction F, we extend the smoothness of sphere and differentiability of norm function in Banach space.