The purpose of this paper is to define the generalized Euler numbers and the generalized Euler numbers of higher order, their recursion formula and some properties were established, accordingly Euler numbers and Euler...The purpose of this paper is to define the generalized Euler numbers and the generalized Euler numbers of higher order, their recursion formula and some properties were established, accordingly Euler numbers and Euler numbers of higher order were extended.展开更多
Let p 〉 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and...Let p 〉 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that ∑k=0^p-1(k^2k/2k)≡(-1)^(p-1)/2-p^2Ep-3(modp^3) ∑k=1^(p-1)/2(k^2k)/k≡(-1)^(p+1)/2 8/3pEp-3(mod p^2),∑k=0^(p-1)/2(k^2k)^2/16k≡(-1)^(p-1)/2+p^2Ep-3(mod p^3),where E0, E1, E2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2, π-2 and the constant K := ∑k=1^∞(k/3)/k^2 (with (-) the Jacobi symbol), two of which are ∑k=1^∞(10k-3)8k/k2(k^2k)^2(k^3k)=π^2/2and ∑k=1^∞(15k-4)(-27)^k-1/k^3(k^2k)^2(k^3k)=K.展开更多
The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbe...The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbers and the values of the Riemann zeta-function.展开更多
In this paper, the definitons of both higher-order multivariable Euler's numbersand polynomial. higher-order multivariable Bernoulli's numbers and polynomial aregiven and some of their important properties...In this paper, the definitons of both higher-order multivariable Euler's numbersand polynomial. higher-order multivariable Bernoulli's numbers and polynomial aregiven and some of their important properties are expounded. As a result, themathematical relationship between higher-order multivariable Euler's polynomial(numbers) and higher-order higher -order Bernoulli's polynomial (numbers) are thusobtained.展开更多
基金Supported by the NNSF of China(10001016) SF for the Prominent Youth of Henan Province
文摘The purpose of this paper is to define the generalized Euler numbers and the generalized Euler numbers of higher order, their recursion formula and some properties were established, accordingly Euler numbers and Euler numbers of higher order were extended.
基金supported by the National Natural Science Foundation of China(GrantNo.10871087)the Overseas Cooperation Fund of China(Grant No.10928101)
文摘Let p 〉 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that ∑k=0^p-1(k^2k/2k)≡(-1)^(p-1)/2-p^2Ep-3(modp^3) ∑k=1^(p-1)/2(k^2k)/k≡(-1)^(p+1)/2 8/3pEp-3(mod p^2),∑k=0^(p-1)/2(k^2k)^2/16k≡(-1)^(p-1)/2+p^2Ep-3(mod p^3),where E0, E1, E2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2, π-2 and the constant K := ∑k=1^∞(k/3)/k^2 (with (-) the Jacobi symbol), two of which are ∑k=1^∞(10k-3)8k/k2(k^2k)^2(k^3k)=π^2/2and ∑k=1^∞(15k-4)(-27)^k-1/k^3(k^2k)^2(k^3k)=K.
基金the Guangdong Provincial Natural Science Foundation (No.05005928)the National Natural Science Foundation (No.10671155) of P.R.China
文摘The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbers and the values of the Riemann zeta-function.
文摘In this paper, the definitons of both higher-order multivariable Euler's numbersand polynomial. higher-order multivariable Bernoulli's numbers and polynomial aregiven and some of their important properties are expounded. As a result, themathematical relationship between higher-order multivariable Euler's polynomial(numbers) and higher-order higher -order Bernoulli's polynomial (numbers) are thusobtained.