We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method propos...We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method proposed by Li et al.(Commun Math Phys 267:1–12,2006),we derive a group of characteristic decompositions for the system.Using these characteristic decompositions,we find a sufficient condition on the initial data to ensure the existence of global-in-time classical solutions.展开更多
We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theor...We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theorem. Besides, by counterexample we prove that Huang-Wang’s energy condition is also necessary for our nonhomogeneous system.展开更多
A simple wave is defined as a flow in a region whose image is a curve in the phase space. It is well known that "the theory of simple waves is fundamental in building up the solutions of flow problems out of elementa...A simple wave is defined as a flow in a region whose image is a curve in the phase space. It is well known that "the theory of simple waves is fundamental in building up the solutions of flow problems out of elementary flow patterns" see Courant and Friedrichs's chassical book "Supersonic Flow and Shock Waves". This paper mainly concerned with the geometric construction of simple waves for the 2D pseudo-steady compressible Euler system. Based on the geometric interpretation, the expansion or compression simple wave flow construction around a pseudo-stream line with a bend part are constructed. It is a building block that appears in the global solution to four contact discontinuities Riemann problems.展开更多
In this paper,we study the transonic shock solutions to the steady Euler system in a quasi-one-dimensional divergent-convergent nozzle.For a given physical supersonic inflow at the entrance,we obtain exactly two non-i...In this paper,we study the transonic shock solutions to the steady Euler system in a quasi-one-dimensional divergent-convergent nozzle.For a given physical supersonic inflow at the entrance,we obtain exactly two non-isentropic transonic shock solutions for the exit pressure lying in a suitable range.In addition,we establish the monotonicity between the location of the transonic shock and the pressure downstream.展开更多
In this paper,we study the global existence of periodic solutions to an isothermal relativistic Euler system in BV space.First,we analyze some properties of the shock and rarefaction wave curves in the Riemann invaria...In this paper,we study the global existence of periodic solutions to an isothermal relativistic Euler system in BV space.First,we analyze some properties of the shock and rarefaction wave curves in the Riemann invariant plane.Based on these properties,we construct the approximate solutions of the isothermal relativistic Euler system with periodic initial data by using a Glimm scheme,and prove that there exists an entropy solution V(x,t)which belongs to L^(∞)∩BV_(loc)(R×R_(+)).展开更多
In this article, we develop a new technique to prove the global existene of entropy solutions to an inhomogeneous isentropic compressible Euler equations through the compensated compactness and vanishing viscosity met...In this article, we develop a new technique to prove the global existene of entropy solutions to an inhomogeneous isentropic compressible Euler equations through the compensated compactness and vanishing viscosity method. In particular, the entropy solutions are uniformly bounded independent of time.展开更多
We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separat...We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a se...In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.展开更多
We analyze the 2 × 2 nonhomogeneous relativistic Euler equations for perfect fluids in special relativity. We impose appropriate conditions on the lower order source terms and establish the existence of global en...We analyze the 2 × 2 nonhomogeneous relativistic Euler equations for perfect fluids in special relativity. We impose appropriate conditions on the lower order source terms and establish the existence of global entropy solutions of the Cauchy problem under these conditions.展开更多
Provides information on a study which presented a numerical method for solving Euler system of equations in reproducing kernel space. Definition and properties of reproducing kernel space; Construction of reproducing ...Provides information on a study which presented a numerical method for solving Euler system of equations in reproducing kernel space. Definition and properties of reproducing kernel space; Construction of reproducing kernel finite difference method; Numerical results of the study.展开更多
基金supported by the National Natural Science Foundation of China(12071278).
文摘We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method proposed by Li et al.(Commun Math Phys 267:1–12,2006),we derive a group of characteristic decompositions for the system.Using these characteristic decompositions,we find a sufficient condition on the initial data to ensure the existence of global-in-time classical solutions.
文摘We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theorem. Besides, by counterexample we prove that Huang-Wang’s energy condition is also necessary for our nonhomogeneous system.
基金supported by the National Natural Science Foundation of China (No.0971130)the Shanghai Leading Academic Discipline Project (No.J50101)
文摘A simple wave is defined as a flow in a region whose image is a curve in the phase space. It is well known that "the theory of simple waves is fundamental in building up the solutions of flow problems out of elementary flow patterns" see Courant and Friedrichs's chassical book "Supersonic Flow and Shock Waves". This paper mainly concerned with the geometric construction of simple waves for the 2D pseudo-steady compressible Euler system. Based on the geometric interpretation, the expansion or compression simple wave flow construction around a pseudo-stream line with a bend part are constructed. It is a building block that appears in the global solution to four contact discontinuities Riemann problems.
基金partially supported by NSFC(11871133,12171498)partially supported by NSFC(11971402,12171401)the NSF of Fujian province,China(2020J01029)。
文摘In this paper,we study the transonic shock solutions to the steady Euler system in a quasi-one-dimensional divergent-convergent nozzle.For a given physical supersonic inflow at the entrance,we obtain exactly two non-isentropic transonic shock solutions for the exit pressure lying in a suitable range.In addition,we establish the monotonicity between the location of the transonic shock and the pressure downstream.
基金supported by NSFC(11671193)the Fundamental Research Funds for the Central Universities NE2015005。
文摘In this paper,we study the global existence of periodic solutions to an isothermal relativistic Euler system in BV space.First,we analyze some properties of the shock and rarefaction wave curves in the Riemann invariant plane.Based on these properties,we construct the approximate solutions of the isothermal relativistic Euler system with periodic initial data by using a Glimm scheme,and prove that there exists an entropy solution V(x,t)which belongs to L^(∞)∩BV_(loc)(R×R_(+)).
基金supported in part by NSFC Grant No.11371349supported in part by NSFC Grant No.11541005Shandong Provincial Natural Science Foundation(ZR2015AM001)
文摘In this article, we develop a new technique to prove the global existene of entropy solutions to an inhomogeneous isentropic compressible Euler equations through the compensated compactness and vanishing viscosity method. In particular, the entropy solutions are uniformly bounded independent of time.
基金supported by the National Natural Science Foundation of China(11871218,12071298)in part by the Science and Technology Commission of Shanghai Municipality(21JC1402500,22DZ2229014)。
文摘We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
文摘In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.
基金Project supported by the National Natural Science Foundation of China (No.10571120)the Natural Science Foundation of Shanghai (No.04ZR14090).
文摘We analyze the 2 × 2 nonhomogeneous relativistic Euler equations for perfect fluids in special relativity. We impose appropriate conditions on the lower order source terms and establish the existence of global entropy solutions of the Cauchy problem under these conditions.
基金NSFC and Project (HIT 2000.01) supported by the Scientific ResearchFoundation of Harbin institute of Technology.
文摘Provides information on a study which presented a numerical method for solving Euler system of equations in reproducing kernel space. Definition and properties of reproducing kernel space; Construction of reproducing kernel finite difference method; Numerical results of the study.