We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can...We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.展开更多
Provides information on a study which presented a numerical method for solving Euler system of equations in reproducing kernel space. Definition and properties of reproducing kernel space; Construction of reproducing ...Provides information on a study which presented a numerical method for solving Euler system of equations in reproducing kernel space. Definition and properties of reproducing kernel space; Construction of reproducing kernel finite difference method; Numerical results of the study.展开更多
基于区间B样条小波(B-Spline Wavelet on the Interval,BSWI)和多变量广义势能函数,该文构造了二类变量小波有限单元,并用于一维结构的弯曲与振动分析。基于广义变分原理,从多变量广义势能函数出发,推导得到多变量有限元列式,并以区间B...基于区间B样条小波(B-Spline Wavelet on the Interval,BSWI)和多变量广义势能函数,该文构造了二类变量小波有限单元,并用于一维结构的弯曲与振动分析。基于广义变分原理,从多变量广义势能函数出发,推导得到多变量有限元列式,并以区间B样条小波尺度函数作为插值函数对两类广义场变量进行离散。此单元的优势在于可以提高广义力的求解精度,因为在传统有限元中,只有一类广义位移场函数,所以广义力通常是通过对位移的求导得到,而多变量单元中,广义位移和广义力都是作为独立变量处理的,避免了求导运算。此外,区间B样条小波是现有小波中数值逼近性能非常好的小波函数,以它作为插值函数可进一步保证求解精度。转换矩阵的应用,可以将无任何明确物理意义的小波系数转换到相应的物理空间,方便了问题的处理。最后,通过数值算例对Euler梁和平面刚架的分析,验证了此单元的正确性和有效性。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10971226,91130013,and 11001270)the National Basic Research Program of China(Grant No.2009CB723802)+1 种基金the Research Innovation Fund of Hunan Province,China (Grant No.CX2011B011)the Innovation Fund of National University of Defense Technology,China(Grant No.B120205)
文摘We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.
基金NSFC and Project (HIT 2000.01) supported by the Scientific ResearchFoundation of Harbin institute of Technology.
文摘Provides information on a study which presented a numerical method for solving Euler system of equations in reproducing kernel space. Definition and properties of reproducing kernel space; Construction of reproducing kernel finite difference method; Numerical results of the study.
文摘基于区间B样条小波(B-Spline Wavelet on the Interval,BSWI)和多变量广义势能函数,该文构造了二类变量小波有限单元,并用于一维结构的弯曲与振动分析。基于广义变分原理,从多变量广义势能函数出发,推导得到多变量有限元列式,并以区间B样条小波尺度函数作为插值函数对两类广义场变量进行离散。此单元的优势在于可以提高广义力的求解精度,因为在传统有限元中,只有一类广义位移场函数,所以广义力通常是通过对位移的求导得到,而多变量单元中,广义位移和广义力都是作为独立变量处理的,避免了求导运算。此外,区间B样条小波是现有小波中数值逼近性能非常好的小波函数,以它作为插值函数可进一步保证求解精度。转换矩阵的应用,可以将无任何明确物理意义的小波系数转换到相应的物理空间,方便了问题的处理。最后,通过数值算例对Euler梁和平面刚架的分析,验证了此单元的正确性和有效性。