期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
颅骨点云曲面重建的Euler’s Elastica模型
1
作者 牛慧勤 潘振宽 +1 位作者 赵俊莉 周明全 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第10期1515-1523,共9页
为从具有复杂拓扑关系的颅骨点云数据中重建精确、光滑的隐式曲面,提出了基于Euler’s Elastica的变分水平集方法.首先,将Euler’s Elastica作为正则化约束引入变分能量泛函,采用增广拉格朗日方法将变分能量泛函最小化问题转化为一系列... 为从具有复杂拓扑关系的颅骨点云数据中重建精确、光滑的隐式曲面,提出了基于Euler’s Elastica的变分水平集方法.首先,将Euler’s Elastica作为正则化约束引入变分能量泛函,采用增广拉格朗日方法将变分能量泛函最小化问题转化为一系列子问题;其次,分别采用广义软阈值公式、解析公式和快速傅里叶变换求解;最后,在计算过程中采用投影算法,有效地避免了水平集函数的重新初始化过程.实验结果表明,相较于现有方法,所提基于Euler’s Elastica的变分水平集方法具有更好的收敛性和有效性,能够提高重建的精确性,避免曲面边缘的缺失. 展开更多
关键词 曲面重建 水平集方法 euler’s elastica 增广拉格朗日方法
下载PDF
A Fast Augmented Lagrangian Method for Euler’s Elastica Models 被引量:2
2
作者 Yuping Duan Yu Wang Jooyoung Hahn 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2013年第1期47-71,共25页
In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and... In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and operator splitting techniques,the resulting saddle-point problem is solved by a serial of subproblems.To tackle the nonlinear constraints arising in the model,a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution.We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic,real-world and medical images for image denoising,image inpainting and image zooming problems. 展开更多
关键词 euler’s elastica augmented Lagrangian method image denoising image inpainting image zooming
原文传递
Fast Linearized Augmented Lagrangian Method for Euler’s Elastica Model 被引量:1
3
作者 Jun Zhang Rongliang Chen +1 位作者 Chengzhi Deng Shengqian Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2017年第1期98-115,共18页
Recently,many variational models involving high order derivatives have been widely used in image processing,because they can reduce staircase effects during noise elimination.However,it is very challenging to construc... Recently,many variational models involving high order derivatives have been widely used in image processing,because they can reduce staircase effects during noise elimination.However,it is very challenging to construct efficient algo-rithms to obtain the minimizers of original high order functionals.In this paper,we propose a new linearized augmented Lagrangian method for Euler’s elastica image denoising model.We detail the procedures of finding the saddle-points of the aug-mented Lagrangian functional.Instead of solving associated linear systems by FFTor linear iterative methods(e.g.,the Gauss-Seidel method),we adopt a linearized strat-egy to get an iteration sequence so as to reduce computational cost.In addition,we give some simple complexity analysis for the proposed method.Experimental results with comparison to the previous method are supplied to demonstrate the efficiency of the proposed method,and indicate that such a linearized augmented Lagrangian method is more suitable to deal with large-sized images. 展开更多
关键词 Image denoising euler’s elastica model linearized augmented Lagrangian method shrink operator closed form solution
原文传递
Euler’s First-Order Explicit Method–Peridynamic Differential Operator for Solving Population Balance Equations of the Crystallization Process
4
作者 Chunlei Ruan Cengceng Dong +2 位作者 Kunfeng Liang Zhijun Liu Xinru Bao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期3033-3049,共17页
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna... Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed. 展开更多
关键词 Population balance equation CRYsTALLIZATION peridynamic differential operator euler’s first-order explicit method
下载PDF
基于Euler/N-S方程的跨音速非线性静气动弹性问题研究 被引量:2
5
作者 郭承鹏 董军 +1 位作者 杨庆华 李俊甫 《航空计算技术》 2006年第6期40-44,共5页
在C-H网格的基础上,采用Jam eson的中心差分有限体积法求解Eu ler/N-S方程,采用结构影响系数法计算结构的弹性变形,用三角元面积加权法和常体积转换法(CVT)实现流固耦合。
关键词 有限体积法 euler/N—s方程 三角元面积加权法 柔度影响系数法 常体积转换法 流固耦合
下载PDF
基于Gauss滤波和Euler修复模型的SAR图像去噪 被引量:1
6
作者 王田芳 李浩 +1 位作者 温四林 崔成玲 《数据采集与处理》 CSCD 北大核心 2016年第3期562-569,共8页
针对二阶偏微分模型(Total variation,TV)在合成孔径雷达(Synthetic aperture radar,SAR)图像去噪时会产生阶梯效应的问题,结合Euler修复正则项的优点,提出一种基于Euler修复正则项的高阶变分模型应用到图像去噪。为有效求解模型,采用... 针对二阶偏微分模型(Total variation,TV)在合成孔径雷达(Synthetic aperture radar,SAR)图像去噪时会产生阶梯效应的问题,结合Euler修复正则项的优点,提出一种基于Euler修复正则项的高阶变分模型应用到图像去噪。为有效求解模型,采用加性算子分裂(Additive operating splitting,AOS)方法进行数值离散。迭代方式为半隐式,克服了显示格式对步长的限制。试验结果表明,仿真实验取得了很好的效果,而对真实的SAR图像,去噪图像会有明显的孤立大颗粒噪声存在,使视觉效果不好。针对此问题,本文又提出一种将Gauss滤波和Euler修复模型相结合的复合模型,数值实验表明,该方法有效地消除了大颗粒噪声,阶梯效应也被有效抑制。 展开更多
关键词 sAR图像 euler弹性修复模型 阶梯效应 加性算子分裂 高阶模型 Guass滤波
下载PDF
任意曲线坐标系Euler方程S2流面的计算方法 被引量:1
7
作者 李得英 宋彦萍 +2 位作者 陈浮 郑振江 陈焕龙 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第7期42-48,共7页
为提高S2流面计算方法对涡轮复杂几何的适应性和计算能力,详细推导了任意正交曲线坐标系下应用于流道中心S2流面计算的Euler方程,提出了任意曲线坐标系Euler方程S2流面的计算方法,发展了适用于三阶精度总变差减小的差分格式的数学模型,... 为提高S2流面计算方法对涡轮复杂几何的适应性和计算能力,详细推导了任意正交曲线坐标系下应用于流道中心S2流面计算的Euler方程,提出了任意曲线坐标系Euler方程S2流面的计算方法,发展了适用于三阶精度总变差减小的差分格式的数学模型,结合了隐格式时间推进、Riemann问题求解等技术。在应用于带弧形凸起的流道及某直叶栅气动参数计算,并对某三级低压涡轮进行性能预测的结果表明:所提方法对激波具有较高的捕捉精度,能够较准确地获得叶栅气动参数分布,且与实验结果吻合良好;对于多级涡轮总性能参数和气动参数分布均有较高的计算精度,是一种可为涡轮设计提供快速、可靠的计算方法。 展开更多
关键词 s2流面计算方法 euler方程 任意正交曲线坐标系 总变差减小的差分格式 低压涡轮
下载PDF
关于Euler函数的Makowski猜想
8
作者 乐茂华 《广西师范学院学报(自然科学版)》 2007年第4期34-35,共2页
对于正整数n,设φ(n)是n的Euler函数.该文证明了:如果φ(n+3)=φ(n)+2,则n=2pr或2pr-3,其中p是适合p≡3(mod 4)的素数,r是正整数.
关键词 euler函数 函数方程 必要条件
下载PDF
Some Kind of Equations Involving Euler's Function 被引量:5
9
作者 LI Yi-jun LI Yu-sheng 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第4期605-608,共4页
For any given positive integer n ≥ 1, the Euler function φ(n) is defined to be the number of positive integers not exceeding n which are relatively prime to n. w(n) is defined to be the number of different prime... For any given positive integer n ≥ 1, the Euler function φ(n) is defined to be the number of positive integers not exceeding n which are relatively prime to n. w(n) is defined to be the number of different prime divisors of n. Some kind of equations involving Euler's function is studied in the paper. 展开更多
关键词 eulers function EQUATION number of solutions
下载PDF
高阶熵条件格式下Euler方程与N-S方程的混合算法
10
作者 李劲菁 李椿萱 董海涛 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2003年第4期335-338,共4页
针对在工程问题中使用N S方程计算量大的问题 ,提出只在粘性作用显著的局部区域求解N S方程 ,在流场的其余部分采用Euler方程计算的办法来模拟具有复杂外形的流动问题 ,并提出了一种基于高阶熵条件格式的算子分裂算法 .应用所构造的算... 针对在工程问题中使用N S方程计算量大的问题 ,提出只在粘性作用显著的局部区域求解N S方程 ,在流场的其余部分采用Euler方程计算的办法来模拟具有复杂外形的流动问题 ,并提出了一种基于高阶熵条件格式的算子分裂算法 .应用所构造的算法对绕迫击炮弹的亚、跨超声速流动进行了模拟计算 .计算结果与试验数据的对比表明 ,所提出的方法是切实可行的 . 展开更多
关键词 分裂 高阶 半群 euler/N-s方程混合模拟算法
下载PDF
Some Remarks for the Relationships between the Generalized Bernoulli and Euler Polynomials 被引量:1
11
作者 LUO Qiu-ming GE Shu-mei 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期16-22,共7页
In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and dedu... In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases. 展开更多
关键词 Bernoulli polynomials and numbers euler polynomials and numbers generalized Bernoulli polynomials and numbers generalized euler polynomials and numbers generating functions srivastava-Pinter's addition theorem
下载PDF
Bending of a Tapered Rod: Modern Application and Experimental Test of Elastica Theory 被引量:2
12
作者 M. P. Silverman Joseph Farrah 《World Journal of Mechanics》 2018年第7期272-300,共29页
A tapered rod mounted at one end (base) and subject to a normal force at the other end (tip) is a fundamental structure of continuum mechanics that occurs widely at all size scales from radio towers to fishing rods to... A tapered rod mounted at one end (base) and subject to a normal force at the other end (tip) is a fundamental structure of continuum mechanics that occurs widely at all size scales from radio towers to fishing rods to micro-electromechanical sensors. Although the bending of a uniform rod is well studied and gives rise to mathematical shapes described by elliptic integrals, no exact closed form solution to the nonlinear differential equations of static equilibrium is known for the deflection of a tapered rod. We report in this paper a comprehensive numerical analysis and experimental test of the exact theory of bending deformation of a tapered rod. Given the rod geometry and elastic modulus, the theory yields virtually all the geometric and physical features that an analyst, experimenter, or instrument designer might want as a function of impressed load, such as the exact curve of deformation (termed the elastica), maximum tip displacement, maximum tip deflection angle, distribution of curvature, and distribution of bending moment. Applied experimentally, the theory permits rapid estimation of the elastic modulus of a rod, which is not easily obtainable by other means. We have tested the theory by photographing the shapes of a set of flexible rods of different lengths and tapers subject to a range of impressed loads and using digital image analysis to extract the coordinates of the elastica curves. The extent of flexure in these experiments far exceeded the range of applicability of approximations that linearize the equations of equilibrium or neglect tapering of the rod. Agreement between the measured deflection curves and the exact theoretical predictions was excellent in all but several cases. In these exceptional cases, the nature of the anomalies provided important information regarding the deviation of the rods from an ideal Euler-Bernoulli cantilever, which thereby permitted us to model the deformation of the rods more accurately. 展开更多
关键词 elastica DEFLECTION of Tapered CANTILEVER euler-Bernoulli Beam Elastic MODULUs Flexure FORMULA
下载PDF
包含广义Euler函数φ3(n)和Smarandache函数S(n)的一方程的解 被引量:2
13
作者 阿克木·优力达西 姜莲霞 《江西科学》 2019年第6期821-824,831,共5页
令φe(n)为广义Euler函数,S(n)为Smarandache函数,其中e为正整数。探讨包含广义Euler函数φ3(n)和Smarandache函数S(n)的方程φ3(n)=S(n8)的可解性问题,利用这2个数论函数的有关性质,给出了这一方程在φ3(n)=3-1φ(n)条件下无正整数解... 令φe(n)为广义Euler函数,S(n)为Smarandache函数,其中e为正整数。探讨包含广义Euler函数φ3(n)和Smarandache函数S(n)的方程φ3(n)=S(n8)的可解性问题,利用这2个数论函数的有关性质,给出了这一方程在φ3(n)=3-1φ(n)条件下无正整数解的结论。 展开更多
关键词 广义euler函数φ3(n) smarandache函数s(n) 方程的正整数解
下载PDF
Automatic DEXP method derived from Euler’s Homogeneity equation
14
作者 Zhao Guo-xing Wu Yong-ting +3 位作者 Sun Yang Zhang Bin-bin Zhou Xin Wang Feng-jun 《Applied Geophysics》 SCIE CSCD 2022年第4期572-579,605,共9页
The depth from extreme points(DEXP)method can be used for estimating source depths and providing a rough image as a starting model for inversion.However,the application of the DEXP method is limited by the lack of pri... The depth from extreme points(DEXP)method can be used for estimating source depths and providing a rough image as a starting model for inversion.However,the application of the DEXP method is limited by the lack of prior information regarding the structural index.Herein,we describe an automatic DEXP method derived from Euler’s Homogeneity equation,and we call it the Euler–DEXP method.We prove that its scaling field is independent of structural indices,and the scaling exponent is a constant for any potential field or its derivative.Therefore,we can simultaneously estimate source depths with diff erent geometries in one DEXP image.The implementation of the Euler–DEXP method is fully automatic.The structural index can be subsequently determined by utilizing the estimated depth.This method has been tested using synthetic cases with single and multiple sources.All estimated solutions are in accordance with theoretical source parameters.We demonstrate the practicability of the Euler–DEXP method with the gravity field data of the Hastings Salt Dome.The results ultimately represent a better understanding of the geometry and depth of the salt dome. 展开更多
关键词 depth from extreme points euler’s Homogeneity equation DEPTH structural index AUTOMATION
下载PDF
Solution to Stokes-Maxwell-Euler Differential Equation
15
作者 A. C. Wimal Lalith De Alwis 《Applied Mathematics》 2017年第3期410-416,共7页
Solutions to the differential equation in Smith’s Prize Examination taken by Maxwell are discussed. It was a competitive examination using which skill full students were identified and James Clerk Maxwell was one of ... Solutions to the differential equation in Smith’s Prize Examination taken by Maxwell are discussed. It was a competitive examination using which skill full students were identified and James Clerk Maxwell was one of them. He later formulated the theory of Electromagnetism and predicted the light speed & its value was subsequently confirmed by experiments. Light travel in a direction perpendicular to oscillating electric and magnetic field through a vacuum from sun. In the same exam paper, Maxwell answered the question related to Stokes Theorem of vector calculus which was used in the formalism of Electromagnetic theory. 展开更多
关键词 sOLUTION Differential Equation smith’s PRIZE EXAM stokes Maxwell euler
下载PDF
Fractional sum and fractional difference on non-uniform lattices and analogue of Euler and Cauchy Beta formulas
16
作者 CHENG Jin-fa 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第3期420-442,共23页
As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the fi... As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices by two different ways.The analogue of Euler’s Beta formula,Cauchy’Beta formula on non-uniform lattices are established,and some fundamental theorems of fractional calculas,the solution of the generalized Abel equation on non-uniform lattices are obtained etc. 展开更多
关键词 difference equation of hypergeometric type non-uniform lattice fractional sum fractional difference special functions euler’s Beta formula Cauchy’Beta formula
下载PDF
The Zhou’s Method for Solving the Euler Equidimensional Equation
17
作者 Pedro Pablo Cárdenas Alzate Jhon Jairo León Salazar Carlos Alberto Rodríguez Varela 《Applied Mathematics》 2016年第17期2165-2173,共9页
In this work, we apply the Zhou’s method [1] or differential transformation method (DTM) for solving the Euler equidimensional equation. The Zhou’s method may be considered as alternative and efficient for finding t... In this work, we apply the Zhou’s method [1] or differential transformation method (DTM) for solving the Euler equidimensional equation. The Zhou’s method may be considered as alternative and efficient for finding the approximate solutions of initial values problems. We prove superiority of this method by applying them on the some Euler type equation, in this case of order 2 and 3 [2]. The power series solution of the reduced equation transforms into an approximate implicit solution of the original equations. The results agreed with the exact solution obtained via transformation to a constant coefficient equation. 展开更多
关键词 Zhou’s Method Equidimensional Equation euler Equation DTM
下载PDF
数论函数方程(φ_(2)(n))^(2)=S(SL(n^(k)))的正整数解
18
作者 李欣欣 高丽 《延安大学学报(自然科学版)》 2024年第3期81-84,共4页
设n是正整数,利用初等数论的方法和广义Euler函数φ_(2)(n)、Smarandache函数S(n)、Smarandache LCM函数SL(n)这3个函数的基本性质,讨论当k=2,5时数论函数方程(φ_(2)(n))^(2)=S(SL(n^(k)))的可解性,并给出了这2个方程相应的所有正整数... 设n是正整数,利用初等数论的方法和广义Euler函数φ_(2)(n)、Smarandache函数S(n)、Smarandache LCM函数SL(n)这3个函数的基本性质,讨论当k=2,5时数论函数方程(φ_(2)(n))^(2)=S(SL(n^(k)))的可解性,并给出了这2个方程相应的所有正整数解。研究结果丰富了数论函数方程的研究内容。 展开更多
关键词 广义euler函数φ_(2)(n) smarandache函数s(n) smarandache LCM函数sL(n) 正整数解
下载PDF
数论函数方程kφ(n)=11φ_(2)(n)+S(SL(n^(37)))的正整数解
19
作者 薛媛媛 贺艳峰 +1 位作者 李勰 韩帆 《延安大学学报(自然科学版)》 2024年第3期76-80,共5页
利用Euler函数φ(n)、广义Euler函数φ_(2)(n)、Smarandache LCM函数SL(n)和Smarandache函数S(n)的性质,并结合初等数论的方法,讨论了数论函数方程kφ(n)=11φ_(2)(n)+S(SL(n^(37)))的可解性,证明了该方程只有k=1,6,7,15,31,46,51时有... 利用Euler函数φ(n)、广义Euler函数φ_(2)(n)、Smarandache LCM函数SL(n)和Smarandache函数S(n)的性质,并结合初等数论的方法,讨论了数论函数方程kφ(n)=11φ_(2)(n)+S(SL(n^(37)))的可解性,证明了该方程只有k=1,6,7,15,31,46,51时有正整数解,并给出了它的所有正整数解。研究结果丰富了数论函数方程可解性的内容。 展开更多
关键词 广义euler函数φ_(2)(n) smarandache LCM函数sL(n) smarandache函数s(n) 正整数解
下载PDF
The Bivariate Normal Integral via Owen’s T Function as a Modified Euler’s Arctangent Series
20
作者 Janez Komelj 《American Journal of Computational Mathematics》 2023年第4期476-504,共29页
The Owen’s T function is presented in four new ways, one of them as a series similar to the Euler’s arctangent series divided by 2&#960, which is its majorant series. All possibilities enable numerically stable ... The Owen’s T function is presented in four new ways, one of them as a series similar to the Euler’s arctangent series divided by 2&#960, which is its majorant series. All possibilities enable numerically stable and fast convergent computation of the bivariate normal integral with simple recursion. When tested  computation on a random sample of one million parameter triplets with uniformly distributed components and using double precision arithmetic, the maximum absolute error was 3.45 × 10<sup>-</sup><sup>16</sup>. In additional testing, focusing on cases with correlation coefficients close to one in absolute value, when the computation may be very sensitive to small rounding errors, the accuracy was retained. In rare potentially critical cases, a simple adjustment to the computation procedure was performed—one potentially critical computation was replaced with two equivalent non-critical ones. All new series are suitable for vector and high-precision computation, assuming they are supplemented with appropriate efficient and accurate computation of the arctangent and standard normal cumulative distribution functions. They are implemented by the R package Phi2rho, available on CRAN. Its functions allow vector arguments and are ready to work with the Rmpfr package, which enables the use of arbitrary precision instead of double precision numbers. A special test with up to 1024-bit precision computation is also presented. 展开更多
关键词 Owen’s T Function Bivariate Normal Integral euler’s Arctangent series RECURsION R Package Phi2rho
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部