In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
介绍了1种把Eulerian计算过程和Lagrangian计算过程耦合起来的数值技术,编写了计算程序,把爆炸流场作用过程和结构动力学响应过程的计算结合起来,实现了爆炸流场对结构加载和结构动力响应及对爆炸流场反作用过程的模拟。利用Eulerian过...介绍了1种把Eulerian计算过程和Lagrangian计算过程耦合起来的数值技术,编写了计算程序,把爆炸流场作用过程和结构动力学响应过程的计算结合起来,实现了爆炸流场对结构加载和结构动力响应及对爆炸流场反作用过程的模拟。利用Eulerian过程的流体弹塑性有限差分计算程序MMIC(multi-materials in cell)模拟爆炸流场发展过程,利用Lagrangian过程的结构动力学有限元计算程序模拟结构响应。应用Euler-Lagrange耦合技术分析了爆炸作用下飞片的变形、破坏和对靶体的侵彻过程,计算结果表明,本文的方法可以较好地反映流场与结构各自的运动发展及相互间作用过程。展开更多
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
文摘介绍了1种把Eulerian计算过程和Lagrangian计算过程耦合起来的数值技术,编写了计算程序,把爆炸流场作用过程和结构动力学响应过程的计算结合起来,实现了爆炸流场对结构加载和结构动力响应及对爆炸流场反作用过程的模拟。利用Eulerian过程的流体弹塑性有限差分计算程序MMIC(multi-materials in cell)模拟爆炸流场发展过程,利用Lagrangian过程的结构动力学有限元计算程序模拟结构响应。应用Euler-Lagrange耦合技术分析了爆炸作用下飞片的变形、破坏和对靶体的侵彻过程,计算结果表明,本文的方法可以较好地反映流场与结构各自的运动发展及相互间作用过程。