When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key...When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.展开更多
The ZK60 magnesium alloy plates were welded by laser beam welding (LBW) and the microstructures in the partially melted zone (PMZ) of welded joints were investigated. For the as-cast alloy, the eutectoid mixtures alon...The ZK60 magnesium alloy plates were welded by laser beam welding (LBW) and the microstructures in the partially melted zone (PMZ) of welded joints were investigated. For the as-cast alloy, the eutectoid mixtures along grain boundaries (GBs) in the PMZ are liquefied during welding, and their re-solidified materials present hypoeutectic characters, which lead to more severe segregation of the Zn element along GBs, and thus enhance the cracking tendency of the PMZ. The main reasons for liquation cracking of PMZ are described as that the absence of liquid at the terminal stage of solidification leads to the occurrence of shrinkage cavities in PMZ, from which liquation cracking initiates, and propagates along the weakened GBs under the tensile stress originating from solidification shrinkage and thermal contraction. Lower heat input can reduce the cracking tendency, and the plastic processing such as rolling also contributes to the mitigation of PMZ liquation cracking by reducing the size of eutectoid phases and changing their distribution in the base metal.展开更多
Considering the effect of crack gap, the bending deformation of the Timoshenko beam with switching cracks is studied. To represent a crack with gap as a nonlinear unidirectional rotational spring, the equivalent flexu...Considering the effect of crack gap, the bending deformation of the Timoshenko beam with switching cracks is studied. To represent a crack with gap as a nonlinear unidirectional rotational spring, the equivalent flexural rigidity of the cracked beam is derived with the generalized Dirac delta function. A closed-form general solution is obtained for bending of a Timoshenko beam with an arbitrary number of switching cracks. Three examples of bending of the Timoshenko beam are presented. The influence of the beam's slenderness ratio, the crack's depth, and the external load on the crack state and bending performances of the cracked beam is analyzed. It is revealed that a cusp exists on the deflection curve, and a jump on the rotation angle curve occurs at a crack location. The relation between the beam's deflection and load is bilinear, each part corresponding to an open or closed state of crack, respectively. When the crack is open, flexibility of the cracked beam decreases with the increase of the beam's slenderness ratio and the decrease of the crack depth. The results are useful in identifying non-destructive cracks on a beam.展开更多
To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkali...To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads.展开更多
In order to clarify the characteristics and formation mechanism of the reheat cracking in Ti2AlNb weldments,a series of heat treatment conditions were performed to the circular joints welded by electron beam,and then ...In order to clarify the characteristics and formation mechanism of the reheat cracking in Ti2AlNb weldments,a series of heat treatment conditions were performed to the circular joints welded by electron beam,and then the macrostructures and microstructures were investigated using optical microscopy,scanning electron microscopy,X-ray diffractometry,and transmission electron microscopy.The results show that the reheat cracking occurs primarily along the grain boundaries in the weld when the Ti2AlNb circular welded joints are heated up to about 700℃.During the heat treatment,an almost complete transformation of B2→O happens while the temperature goes up through the O single-phase region.Then,O→B2+O phase transformation occurs primarily along the grain boundaries as the weld metal continues to heat up to the B2+O dual-phase region.Under the high tension stress consisting of welding residual stress and phase transformation stress,reheat cracking occurs at the interface between the B2+O dual-phase layer and the O-phase matrix.展开更多
As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crac...As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.展开更多
Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of th...Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases,such as bending analysis of cantilevers,and recourse must be made to the integral version.In this article,a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain-and stress-driven integral nonlocal models.This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation.First,the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy.Also,in each case,the governing equation is obtained in both strong and weak forms.To solve numerically the derived equations,matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule.It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes.Also,it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.展开更多
Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(...Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(T)),which is also a typical geometry in fracture analysis.The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses.The real weld configurations are simplified as a strip,and different weld strength mis-matching ratio M,crack depth/width ratio a/W and weld width 2H are in consideration.As a result,it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M,a/W and ligament-to-weld width ratio(W-a)/H.Moreover,useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T).For the EBW joints with SEC(T),the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal,when M changing from 1.6 to 0.6.When M decreasing to 0.4,the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of(W-a)/H.The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T).The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).展开更多
The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatmen...The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatment cycles on the final microstructure before and after welding were examined. Welds were made on flat coupons using an EBW machine, and the two heat-treatment cycles were designed to reduce γ′ liquation before welding. Microstructural features were also examined by optical and scanning electron microscopy. The results showed that the change in the morphology and size of the γ′ precipitates in the pre-weld heat-treatment cycles changed the ability of the superalloy to release the tensile stresses caused by the matrix phase cooling after EBW. The high hardness in the welded coupons subjected to the first heat-treatment cycle resulted in greater resistance to stress release by the base alloy, and the concentration of stress in the base metal caused liquation cracks in the heat-affected zone and solidification cracks in the weld area.展开更多
In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading level...In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.展开更多
Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-le...Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.展开更多
Based on the transfer matrix method and Forman equation,a new method is proposed to conduct the modal and fatigue life analysis of a beam with multiple transverse cracks.In the modal analysis,the damping loss factor i...Based on the transfer matrix method and Forman equation,a new method is proposed to conduct the modal and fatigue life analysis of a beam with multiple transverse cracks.In the modal analysis,the damping loss factor is introduced by the complex elastic modulus,bending springs without mass are used to replace the transverse cracks,and the characteristic transfer matrix of the whole cracked beam can be derived.In the fatigue life analysis,considering the interaction of the beam vibration and fatigue cracks growth,the fatigue life of the cracked beam is predicted by the timing analysis method.Numerical calculation shows that cracks have a significant influence on the modal and fatigue life of the beam.展开更多
This paper illustrates the crack identification method combining wavelet analysis with transform matrix. Firstly, the fundamental vibration mode was applied to wavelet analysis. The crack location was found by the pea...This paper illustrates the crack identification method combining wavelet analysis with transform matrix. Firstly, the fundamental vibration mode was applied to wavelet analysis. The crack location was found by the peaks of the wavelet coefficients. Secondly, based on the identified crack locations, a simple transform matrix method requiring only the first two tested natural frequencies was used to further identify the crack depth. The present method can be used for crack identification in a complex structure. Numerical results of crack identification of a stepped cantilever beam show that the suggested method is feasible.展开更多
The present paper concerns the fracture characteristics and ductility of cracked concrete beam externally bonded with carbon fiber-reinforced polymer (CFRP) sheet as well as the integration behaviors between CFRP/conc...The present paper concerns the fracture characteristics and ductility of cracked concrete beam externally bonded with carbon fiber-reinforced polymer (CFRP) sheet as well as the integration behaviors between CFRP/concrete interfacial debonding and concrete cracking.Three-point bending tests were carried out on the CFRP-strengthened cracked concrete beams with varying specimen depth and initial crack length.A straingauge method was developed to monitor the crack initiation and propagation in concrete,and the CFRP/concrete interfacial bonding behaviors,respectively.Clip gauges were used to measure crack mouth opening displacement (CMOD) and the deflection at midspan.Experimental results revealed that CFRP-strengthened specimen shows a higher load capacity under the same deformation level and a better inelastic deformation capacity compared with the unstrengthened one.For there are two manifest peak values in the obtained load versus displacement curve,the ductility of CFRP-strengthened concrete beams were investigated using index expressed as area ratio on the load versus displacement curve.The calculated results indicated that the contribution from CFRP sheet to the ductility improvement of specimen is notable when the deflection at midspan exceeded 10.5 times the first-crack deflection.展开更多
In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and tra...In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and transverse displacements are taken into account as degrees of freedom.Four different boundary conditions are considered including pinned support-roller support,pinned support-pinned support,clamped-clamped and clamped-free.Peridynamic results are compared against finite element analysis results for transverse and axial deformations and a very good agreement is observed for all different types of boundary conditions.展开更多
Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained result...Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.展开更多
Local flexibility of crack plays an important role in crack identification of structures.Analytical methods on local flexibility in a cracked beam with simple geometric crossing sections,such as rectangle,circle,have ...Local flexibility of crack plays an important role in crack identification of structures.Analytical methods on local flexibility in a cracked beam with simple geometric crossing sections,such as rectangle,circle,have been made,but there are some difficulties in calculating local flexibility in a cracked beam with complex crossing section,such as pipe and I-beam.In this paper,an analytical method to calculate the local flexibility and rotational spring stiffness due to crack in I-beam is proposed.The local flexibility with respect to various crack depths can be calculated by dividing a cracked I-beam into a series of thin rectangles.The forward and inverse problems in crack detection of I-beam are studied.The forward problem comprises the construction of crack model exclusively for crack section and the construction of a numerically I-beam model to gain crack detection database.The inverse problem consists of the measurement of modal parameters and the detection of crack parameters.Two experiments including measurement of rotational spring stiffness and prediction of cracks in I-beam are conducted.Experimental results based on the current methods indicate that relative error of crack location is less than 3%,while the error of crack depth identification is less than 6%.Crack identification of I-beam is expected to contribute to the development of automated crack detection techniques for railway lines and building skeletons.展开更多
Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack grow...Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack growth (FCG) rate and crack path deviation (CPD). The base metal served in a turbine disk of aerospace engine was selected to fabricate bead-on-plate weldments by using electron beam welding. Some wedge-type opening loading specimens, notched in three different zone of weld metal, HAZ and base metal, were employed and performed fatigue crack growth tests at 650℃. The results show that the fatigue crack growth of electron beam welded joints is instable due to the influence of mechanical heterogeneities. Owing to the crack deviation at the weld metal and heat-affected-zone (HAZ), the effective growth driving force at the tip of fatigue crack was reduced with the reduction of the effective stress intensity factor (SIF) which finally causes fatigue crack rate decrease. Fatigue crack was strongly affected by size and the symmetrical characteristics of the plastic zone at the crack tip, which means that the integrity of the welded structure containing the fatigue crack mainly depended on the toughness of the low strength zone.展开更多
Microstructural characterization and crack formed mechanism during electron beam welding of titanium aluminide Ti-45Al-1.7Cr-1.7Nb were investigated. The results show that the welded microstructure exhibits columnar a...Microstructural characterization and crack formed mechanism during electron beam welding of titanium aluminide Ti-45Al-1.7Cr-1.7Nb were investigated. The results show that the welded microstructure exhibits columnar and dendritic structure. Microstructural constituents in the fusion zone are a massive gamma structure and some lamellar structure consists of alternating platelets of α2 and γ. The major contributing factor of the susceptibility to solidstate cracking is thermally induced stress. The import role of the suppression of the α phase decomposition, the difference of α2/γ phases thermal expansion coefficient and the lamellar spacing changes of lamellar structure with cooling rate all play effect on the crack forming mechanism.展开更多
基金supported by the National Natural Science Foundation of China(No.52074042)National Key R&D Program of China(No.2018YFC1504802).
文摘When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.
基金Project (2011ZX06001-003) supported by the National Science and Technology Major Project, ChinaProject (51274092) supported by the National Natural Science Foundation of China
文摘The ZK60 magnesium alloy plates were welded by laser beam welding (LBW) and the microstructures in the partially melted zone (PMZ) of welded joints were investigated. For the as-cast alloy, the eutectoid mixtures along grain boundaries (GBs) in the PMZ are liquefied during welding, and their re-solidified materials present hypoeutectic characters, which lead to more severe segregation of the Zn element along GBs, and thus enhance the cracking tendency of the PMZ. The main reasons for liquation cracking of PMZ are described as that the absence of liquid at the terminal stage of solidification leads to the occurrence of shrinkage cavities in PMZ, from which liquation cracking initiates, and propagates along the weakened GBs under the tensile stress originating from solidification shrinkage and thermal contraction. Lower heat input can reduce the cracking tendency, and the plastic processing such as rolling also contributes to the mitigation of PMZ liquation cracking by reducing the size of eutectoid phases and changing their distribution in the base metal.
文摘Considering the effect of crack gap, the bending deformation of the Timoshenko beam with switching cracks is studied. To represent a crack with gap as a nonlinear unidirectional rotational spring, the equivalent flexural rigidity of the cracked beam is derived with the generalized Dirac delta function. A closed-form general solution is obtained for bending of a Timoshenko beam with an arbitrary number of switching cracks. Three examples of bending of the Timoshenko beam are presented. The influence of the beam's slenderness ratio, the crack's depth, and the external load on the crack state and bending performances of the cracked beam is analyzed. It is revealed that a cusp exists on the deflection curve, and a jump on the rotation angle curve occurs at a crack location. The relation between the beam's deflection and load is bilinear, each part corresponding to an open or closed state of crack, respectively. When the crack is open, flexibility of the cracked beam decreases with the increase of the beam's slenderness ratio and the decrease of the crack depth. The results are useful in identifying non-destructive cracks on a beam.
基金Funded Partly by the National Natural Science Foundation of China(No.51178361)
文摘To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads.
文摘In order to clarify the characteristics and formation mechanism of the reheat cracking in Ti2AlNb weldments,a series of heat treatment conditions were performed to the circular joints welded by electron beam,and then the macrostructures and microstructures were investigated using optical microscopy,scanning electron microscopy,X-ray diffractometry,and transmission electron microscopy.The results show that the reheat cracking occurs primarily along the grain boundaries in the weld when the Ti2AlNb circular welded joints are heated up to about 700℃.During the heat treatment,an almost complete transformation of B2→O happens while the temperature goes up through the O single-phase region.Then,O→B2+O phase transformation occurs primarily along the grain boundaries as the weld metal continues to heat up to the B2+O dual-phase region.Under the high tension stress consisting of welding residual stress and phase transformation stress,reheat cracking occurs at the interface between the B2+O dual-phase layer and the O-phase matrix.
基金Supported by National Natural Science Foundation of China(Grant Nos.51035008,51304019)National Science Foundation of USA(Grant Nos.CMMI-1000830,CMMI-1229532)+1 种基金the University of Maryland Baltimore County Directed Research Initiative Fund ProgramFundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-14-123A2)
文摘As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.
文摘Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases,such as bending analysis of cantilevers,and recourse must be made to the integral version.In this article,a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain-and stress-driven integral nonlocal models.This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation.First,the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy.Also,in each case,the governing equation is obtained in both strong and weak forms.To solve numerically the derived equations,matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule.It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes.Also,it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
基金supported by National Natural Science Foundation of China (Grant No. 50935008)
文摘Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(T)),which is also a typical geometry in fracture analysis.The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses.The real weld configurations are simplified as a strip,and different weld strength mis-matching ratio M,crack depth/width ratio a/W and weld width 2H are in consideration.As a result,it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M,a/W and ligament-to-weld width ratio(W-a)/H.Moreover,useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T).For the EBW joints with SEC(T),the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal,when M changing from 1.6 to 0.6.When M decreasing to 0.4,the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of(W-a)/H.The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T).The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).
文摘The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatment cycles on the final microstructure before and after welding were examined. Welds were made on flat coupons using an EBW machine, and the two heat-treatment cycles were designed to reduce γ′ liquation before welding. Microstructural features were also examined by optical and scanning electron microscopy. The results showed that the change in the morphology and size of the γ′ precipitates in the pre-weld heat-treatment cycles changed the ability of the superalloy to release the tensile stresses caused by the matrix phase cooling after EBW. The high hardness in the welded coupons subjected to the first heat-treatment cycle resulted in greater resistance to stress release by the base alloy, and the concentration of stress in the base metal caused liquation cracks in the heat-affected zone and solidification cracks in the weld area.
基金Sponsored by the Outstanding Youth Scientific Fund of Henan Province(Grant No.04120002300)Program for Innovation in University of Henan Province(Grant No.[2004]294)
文摘In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.
基金Projects(51605138,U1508210)supported by the National Natural Science Foundation of ChinaProject(BK20160286)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015B30214)supported by the Fundamental Research Funds for the Central Universities,China
文摘Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.
基金supported by aproject funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Based on the transfer matrix method and Forman equation,a new method is proposed to conduct the modal and fatigue life analysis of a beam with multiple transverse cracks.In the modal analysis,the damping loss factor is introduced by the complex elastic modulus,bending springs without mass are used to replace the transverse cracks,and the characteristic transfer matrix of the whole cracked beam can be derived.In the fatigue life analysis,considering the interaction of the beam vibration and fatigue cracks growth,the fatigue life of the cracked beam is predicted by the timing analysis method.Numerical calculation shows that cracks have a significant influence on the modal and fatigue life of the beam.
基金supported by the Key Natural Science Research of Guangdong Province,China P.R(Grant No.05Z003)the Project of Tackling Key Problem of Guangdong Province,China P.R(Grant No.2006B12401008)the National Natural Science Foundation of China(Grant No.10672067).
文摘This paper illustrates the crack identification method combining wavelet analysis with transform matrix. Firstly, the fundamental vibration mode was applied to wavelet analysis. The crack location was found by the peaks of the wavelet coefficients. Secondly, based on the identified crack locations, a simple transform matrix method requiring only the first two tested natural frequencies was used to further identify the crack depth. The present method can be used for crack identification in a complex structure. Numerical results of crack identification of a stepped cantilever beam show that the suggested method is feasible.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50578025)the National Key Project of Science and Technology (Grant No. 2006BAJ03A03-09)
文摘The present paper concerns the fracture characteristics and ductility of cracked concrete beam externally bonded with carbon fiber-reinforced polymer (CFRP) sheet as well as the integration behaviors between CFRP/concrete interfacial debonding and concrete cracking.Three-point bending tests were carried out on the CFRP-strengthened cracked concrete beams with varying specimen depth and initial crack length.A straingauge method was developed to monitor the crack initiation and propagation in concrete,and the CFRP/concrete interfacial bonding behaviors,respectively.Clip gauges were used to measure crack mouth opening displacement (CMOD) and the deflection at midspan.Experimental results revealed that CFRP-strengthened specimen shows a higher load capacity under the same deformation level and a better inelastic deformation capacity compared with the unstrengthened one.For there are two manifest peak values in the obtained load versus displacement curve,the ductility of CFRP-strengthened concrete beams were investigated using index expressed as area ratio on the load versus displacement curve.The calculated results indicated that the contribution from CFRP sheet to the ductility improvement of specimen is notable when the deflection at midspan exceeded 10.5 times the first-crack deflection.
文摘In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and transverse displacements are taken into account as degrees of freedom.Four different boundary conditions are considered including pinned support-roller support,pinned support-pinned support,clamped-clamped and clamped-free.Peridynamic results are compared against finite element analysis results for transverse and axial deformations and a very good agreement is observed for all different types of boundary conditions.
文摘Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.
基金supported by National Natural Science Foundation of China (Grant No. 50805114)National Basic Research Program of China (973 Program,Grant No. 2011CB706805)
文摘Local flexibility of crack plays an important role in crack identification of structures.Analytical methods on local flexibility in a cracked beam with simple geometric crossing sections,such as rectangle,circle,have been made,but there are some difficulties in calculating local flexibility in a cracked beam with complex crossing section,such as pipe and I-beam.In this paper,an analytical method to calculate the local flexibility and rotational spring stiffness due to crack in I-beam is proposed.The local flexibility with respect to various crack depths can be calculated by dividing a cracked I-beam into a series of thin rectangles.The forward and inverse problems in crack detection of I-beam are studied.The forward problem comprises the construction of crack model exclusively for crack section and the construction of a numerically I-beam model to gain crack detection database.The inverse problem consists of the measurement of modal parameters and the detection of crack parameters.Two experiments including measurement of rotational spring stiffness and prediction of cracks in I-beam are conducted.Experimental results based on the current methods indicate that relative error of crack location is less than 3%,while the error of crack depth identification is less than 6%.Crack identification of I-beam is expected to contribute to the development of automated crack detection techniques for railway lines and building skeletons.
基金National Defense Key Lab for High Energy Density Beam Technology in China for the financial support.
文摘Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack growth (FCG) rate and crack path deviation (CPD). The base metal served in a turbine disk of aerospace engine was selected to fabricate bead-on-plate weldments by using electron beam welding. Some wedge-type opening loading specimens, notched in three different zone of weld metal, HAZ and base metal, were employed and performed fatigue crack growth tests at 650℃. The results show that the fatigue crack growth of electron beam welded joints is instable due to the influence of mechanical heterogeneities. Owing to the crack deviation at the weld metal and heat-affected-zone (HAZ), the effective growth driving force at the tip of fatigue crack was reduced with the reduction of the effective stress intensity factor (SIF) which finally causes fatigue crack rate decrease. Fatigue crack was strongly affected by size and the symmetrical characteristics of the plastic zone at the crack tip, which means that the integrity of the welded structure containing the fatigue crack mainly depended on the toughness of the low strength zone.
文摘Microstructural characterization and crack formed mechanism during electron beam welding of titanium aluminide Ti-45Al-1.7Cr-1.7Nb were investigated. The results show that the welded microstructure exhibits columnar and dendritic structure. Microstructural constituents in the fusion zone are a massive gamma structure and some lamellar structure consists of alternating platelets of α2 and γ. The major contributing factor of the susceptibility to solidstate cracking is thermally induced stress. The import role of the suppression of the α phase decomposition, the difference of α2/γ phases thermal expansion coefficient and the lamellar spacing changes of lamellar structure with cooling rate all play effect on the crack forming mechanism.