期刊文献+
共找到1,383篇文章
< 1 2 70 >
每页显示 20 50 100
Theory of Flexural Shear, Bending and Torsion for a Thin-Walled Beam of Open Section
1
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第3期23-53,共31页
Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans... Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre. 展开更多
关键词 Thin Wall theory Cantilever beam Open Channel Section Principal Axes Flexure Transverse Shear TORSION Shear Centre Shear Flow WARPING Fixed-End Constraint
下载PDF
Bending and wave propagation analysis of axially functionally graded beams based on a reformulated strain gradient elasticity theory
2
作者 Shaopeng WANG Jun HONG +1 位作者 Dao WEI Gongye ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1803-1820,共18页
A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain g... A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain gradient, velocity gradient,and couple stress effects, and accounts for the material variation along the axial direction of the two-component functionally graded beam. The governing equations and complete boundary conditions of the AFG beam are derived based on Hamilton's principle. The correctness of the current model is verified by comparing the static behavior results of the current model and the finite element model(FEM) at the micro-scale. The influence of material inhomogeneity and size effect on the static and dynamic responses of the AFG beam is studied. The numerical results show that the static and vibration responses predicted by the newly developed model are different from those based on the classical model at the micro-scale. The new model can be applied not only in the optimization of micro acoustic wave devices but also in the design of AFG micro-sensors and micro-actuators. 展开更多
关键词 Timoshenko beam theory reformulated strain gradient elastic theory(RSGET) axially functionally graded(AFG)material Hamilton's principle
下载PDF
Chebyshev polynomial-based Ritz method for thermal buckling and free vibration behaviors of metal foam beams
3
作者 N.D.NGUYEN T.N.NGUYEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期891-910,共20页
This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw... This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses. 展开更多
关键词 Ritz method Chebyshev function BUCKLING VIBRATION metal foam beam higher-order beam theory(HOBT)
下载PDF
Intensity correlation properties of x-ray beams split with Laue diffraction
4
作者 赵昌哲 司尚禹 +3 位作者 张海鹏 薛莲 李中亮 肖体乔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期379-383,共5页
Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i... Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging. 展开更多
关键词 x-ray ghost imaging beam splitting with Laue diffraction intensity correlation dynamical theory of x-ray diffraction
下载PDF
Dynamic and electrical responses of a curved sandwich beam with glass reinforced laminate layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact
5
作者 N.SHAHVEISI S.FELI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期155-178,共24页
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate... The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed. 展开更多
关键词 analytical model piezoelectric layer curved sandwich beam glass reinforced laminate(GRL) pliable core low-velocity impact(LVI) classical non-adhesive elastic contact theory
下载PDF
Longwall mining “cutting cantilever beam theory” and 110 mining method in China——The third mining science innovation 被引量:65
6
作者 Manchao He Guolong Zhu Zhibiao Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期483-492,共10页
With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1... With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1960s, illustrating that the transmission and equilibrium method of overburdenpressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called "121mining method", which lays a solid foundation for development of mining science and technology inChina. The "transfer rock beam theory" (TRBT) proposed in the 1980s gives a further understanding forthe transmission path of stope overburden pressure and pressure distribution in high-stress areas. In thisregard, the advanced 121 mining method was proposed with smaller coal pillar for excavation design,making significant contributions to improvement of the coal recovery rate in that era. In the 21st century,the traditional mining technologies faced great challenges and, under the theoretical developmentspioneered by Profs. Minggao Qian and Zhenqi Song, the "cutting cantilever beam theory" (CCBT) wasproposed in 2008. After that the 110 mining method is formulated subsequently, namely one stope face,after the first mining cycle, needs one advanced gateway excavation, while the other one is automaticallyformed during the last mining cycle without coal pillars left in the mining area. This method can beimplemented using the CCBT by incorporating the key technologies, including the directional presplittingroof cutting, constant resistance and large deformation (CRLD) bolt/anchor supporting systemwith negative Poisson's ratio (NPR) effect material, and remote real-time monitoring technology. TheCCBT and 110 mining method will provide the theoretical and technical basis for the development ofmining industry in China. 展开更多
关键词 Mining innovation 121 mining method Cutting cantilever beam theory (CCBT) Non-pillar mining 110 mining method
下载PDF
Free vibration analysis of functionally graded material beams based on Levinson beam theory 被引量:6
7
作者 Xuan WANG Shirong LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第7期861-878,共18页
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equati... Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response. 展开更多
关键词 functionally graded material (FGM) beam Levinson beam theory (LBT) free vibration shooting method natural frequency
下载PDF
A new higher-order shear deformation theory and refined beam element of composite laminates 被引量:3
8
作者 WanjiChen ZhenWu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第1期65-69,共5页
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces... A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy. 展开更多
关键词 Laminated composite beam Higher-order shear deformation theory Refined beam element
下载PDF
Optimal design of sub-wavelength metal rectangular gratings for polarizing beam splitter based on effective medium theory 被引量:3
9
作者 赵华君 彭拥军 +3 位作者 谭菊 廖长荣 李鹏 任晓霞 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第12期5326-5330,共5页
A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antiref... A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method. 展开更多
关键词 polarizing beam splitter sub-wavelength metal rectangular gratings effective medium theory ANTIREFLECTION
下载PDF
Optimization approach hydroforming car beam billets based grey system theory 被引量:1
10
作者 吴耀金 薛勇 段江年 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期48-53,共6页
Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, a... Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams. 展开更多
关键词 car beam HYDROFORMING BILLET grey system theory multi objective optimization
下载PDF
Conversion between solid and beam element solutions of finite element method based on meta-modeling theory:development and application to a ramp tunnel structure 被引量:1
11
作者 JASC Jayasinghe M. Hori +2 位作者 MR Riaz MLL Wijerathne T Ichimura 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期297-309,共13页
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ... In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end. 展开更多
关键词 meta-modeling theory finite element method solid and beam element models continuum mechanics structural mechanics
下载PDF
Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory 被引量:1
12
作者 王博 邓子辰 张凯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期269-280,共12页
Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a... Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a curved beam, which is unlike previous similar work. Firstly, the governing equations of motion are derived by the Hamilton principle, meanwhile, the Galerkin approach is carried out to convert the nonlinear integral-differential equation into a second-order nonlinear ordinary differ- ential equation. Then, the precise integration method based on the local linearzation is appropriately designed for solving the above dynamic equations. Besides, the numerical example is presented, the effects of the nonlocal parameters, the elastic medium constants, the waviness ratios, and the material lengths on the dynamic response are analyzed. The results show that the above mentioned effects have influences on the dynamic behavior of the SWCNT. 展开更多
关键词 embedded curved carbon nanotube nonlocal Timoshenko beam theory nonlinear vibration harmonic load precise integrator method
下载PDF
An R(x)-orthonormal theory for the vibration performance of a non-smooth symmetric composite beam with complex interface 被引量:2
13
作者 Chein-Shan Liu Bo-Tong Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第1期228-241,I0007,共15页
A composite beam is symmetric if both the material property and support are symmetric with respect to the middle point. In order to study the free vibration performance of the symmetric composite beams with different ... A composite beam is symmetric if both the material property and support are symmetric with respect to the middle point. In order to study the free vibration performance of the symmetric composite beams with different complex nonsmooth/discontinuous interfaces, we develop an R(x)-orthonormal theory, where R(x) is an integrable flexural rigidity function. The R(x)-orthonormal bases in the linear space of boundary functions are constructed, of which the second-order derivatives of the boundary functions are asked to be orthonormal with respect to the weight function R(x). When the vibration modes of the symmetric composite beam are expressed in terms of the R(x)-orthonormal bases we can derive an eigenvalue problem endowed with a special structure of the coefficient matrix A :=[aij ],aij= 0 if i + j is odd. Based on the special structure we can prove two new theorems, which indicate that the characteristic equation of A can be decomposed into the product of the characteristic equations of two sub-matrices with dimensions half lower. Hence, we can sequentially solve the natural frequencies in closed-form owing to the specialty of A. We use this powerful new theory to analyze the free vibration performance and the vibration modes of symmetric composite beams with three different interfaces. 展开更多
关键词 SYMMETRIC composite beams R(x)-orthogonality of second-order derivatives of boundary functions R(x)-orthonormal theory Non-smooth/discontinuous interface Sequentially closed-from natural frequencies
下载PDF
BENDING THEORIES FOR BEAMS AND PLATES WITH SINGLE GENERALIZED DISPLACEMENT
14
作者 龚克 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第9期1091-1098,共8页
Classical bending theories for beams and plates can not be used for short, stubby beams and thick plates since transverse shearing effect is excluded, and ordinary theories with multiple generalized displacements can ... Classical bending theories for beams and plates can not be used for short, stubby beams and thick plates since transverse shearing effect is excluded, and ordinary theories with multiple generalized displacements can not be used for long, slender beams and thin plates since the innate relation between rotation angle and deflection is ignored. These two types of theories are not consistent due to the contradiction of dependence and independence of the rotation angle. Based on several basic assumptions, a new type of theories which not only include the transverse shearing effect is presented, but also the relation between potation angle and deflection is obtained. Analytical solutions of several simple beams are given. It has been testified by numerical examples that the new theories can be used for either long, slender beams and thin plates or short, stubby beams and thick plates. 展开更多
关键词 beam plate bending theory transverse shearing effect universal finite element
下载PDF
Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory 被引量:3
15
作者 M.MOHAMMADIMEHR M.J.FARAHI S.ALIMIRZAEI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1375-1392,共18页
In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement... In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency. 展开更多
关键词 vibration and wave propagation analysis twisted micro-beam strain gradient theory (SGT) rate of twist angle
下载PDF
CONTACT PROBLEMS AND DUAL VARIATIONAL INEQUALITY OF 2-D ELASTOPLASTIC BEAM THEORY
16
作者 高扬 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第10期953-968,共16页
In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and exter... In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and external complementarity conditions is proposed. The external complementarity condition provides the free boundary condition. while the internal complemententarity condition gives the interface of the elastic and plastic regions. We prove that this bicomplementarity problem is equivalent to a nonlinear variational inequality The dual variational inequality is also developed.It is shown that the dual variational inequality is much easier than the primalvariational problem. Application to limit analysis is illustrated. 展开更多
关键词 complementarity problems variational inequality duality theory elastoplastic beam contact problem
下载PDF
Investigation of intense sheet electron beam transport using the macroscopic cold-fluid model and the single-particle orbit theory
17
作者 韩莹 阮存军 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期207-213,共7页
The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.T... The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices. 展开更多
关键词 focusing and transport macroscopic cold-fluid model sheet electron beam single-particle orbit theory
下载PDF
Static and Dynamic Pull-In Instability of Nano-Beams Resting on Elastic Foundation Based on the Nonlocal Elasticity Theory
18
作者 HAMID M Sedighi ASHKAN Sheikhanzadeh 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期385-397,共13页
This paper provides the static and dynamic pullin behavior of nano-beams resting on the elastic foundation based on the nonlocal theory which is able to capture the size effects for structures in micron and sub-micron... This paper provides the static and dynamic pullin behavior of nano-beams resting on the elastic foundation based on the nonlocal theory which is able to capture the size effects for structures in micron and sub-micron scales. For this purpose, the governing equation of motion and the boundary conditions are driven using a variational approach. This formulation includes the influences of fringing field and intermolecular forces such as Casimir and van der Waals forces. The differential quadrature (DQ) method is employed as a high-order approximation to discretize the governing nonlinear differential equation, yielding more accurate results with a Considerably smaller number of grid points. In addition, a powerful analytical method called parameter expansion method (PEM) is utilized to compute the dynamic solution and frequency-amplitude relationship. It is illustrated that the first two terms in series expansions are sufficient to produce an acceptable solution of the mentioned structure. Finally, the effects of basic parameters on static and dynamic pull-in insta- bility and natural frequency are studied. 展开更多
关键词 Static and dynamic pull·in voltages Size dependent Nonlocal theory Euler·Bernoulli beam model Differential quadrature method Parameter Expansion method
下载PDF
Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach 被引量:3
19
作者 M. FARAJI-OSKOUIE A. NOROUZZADEH +1 位作者 R. ANSARI H. ROUHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第6期767-782,共16页
A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this... A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions. 展开更多
关键词 INTEGRAL MODEL of NONLOCAL ELASTICITY DIFFERENTIAL MODEL of NONLOCAL ELASTICITY MICROPOLAR theory finite element (FE) analysis Timoshenko nano-beam
下载PDF
Instability of functionally graded micro-beams via micro-structure-dependent beam theory 被引量:1
20
作者 Xiaobai LI Li LI Yujin HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期923-952,共30页
This paper focuses on the buckling behaviors of a micro-scaled bi-directional functionally graded (FG) beam with a rectangular cross-section, which is now widely used in fabricating components of micro-nano-electro-... This paper focuses on the buckling behaviors of a micro-scaled bi-directional functionally graded (FG) beam with a rectangular cross-section, which is now widely used in fabricating components of micro-nano-electro-mechanical systems (MEMS/NEMS) with a wide range of aspect ratios. Based on the modified couple stress theory and the principle of minimum potential energy, the governing equations and boundary conditions for a micro-structure-dependent beam theory are derived. The present beam theory incorporates different kinds of higher-order shear assumptions as well as the two familiar beam theories, namely, the Euler-Bernoulli and Timoshenko beam theories. A numerical solu- tion procedure, based on a generalized differential quadrature method (GDQM), is used to calculate the results of the bi-directional FG beams. The effects of the two exponential FG indexes, the higher-order shear deformations, the length scale parameter, the geomet- ric dimensions, and the different boundary conditions on the critical buckling loads are studied in detail, by assuming that Young's modulus obeys an exponential distribution function in both length and thickness directions. To reach the desired critical buckling load, the appropriate exponential FG indexes and geometric shape of micro-beams can be designed according to the proposed theory. 展开更多
关键词 bi-directional functionally graded(FG)material BUCKLING modified couplestress theory MICRO-beam
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部