There were various problems in the determination of oil acid value of the national standard method, and this paper developed a low cost, simple and effective way to determine the acid value of oil and grease. Furtherm...There were various problems in the determination of oil acid value of the national standard method, and this paper developed a low cost, simple and effective way to determine the acid value of oil and grease. Furthermore, the esterification of high acid Euphorbia lathyris L. oil (ELO) with methanol could be efficiently catalyzed by hydrochloric acid to produce biodiesel, and the influencing factors such as the amount of catalyst, reaction time, reaction temperature and molar ratio of oil to methanol were also studied. Under the optimized conditions with the oil to methanol molar ratio of 1:30 and a reaction temperature of 70℃, 95.8% oil conversion was obtained within 40 min in the presence of only 2.0 wt% of catalyst. Therefore, the low-cost non-edible Euphorbia lathyris L. oil as a raw material had good potential for the synthesis of biodiesel in industry.展开更多
Euphorbia factor L2, a lathyrane diterpenoid isolated from caper euphorbia seed(the seeds of Euphorbia lathyris L.), has been traditionally applied to treat cancer. This article focuses on the cytotoxic activity of Eu...Euphorbia factor L2, a lathyrane diterpenoid isolated from caper euphorbia seed(the seeds of Euphorbia lathyris L.), has been traditionally applied to treat cancer. This article focuses on the cytotoxic activity of Euphorbia factor L2 against lung carcinoma A549 cells and the mechanism by which apoptosis is induced. We analyzed the cytotoxicity and related mechanism of Euphorbia factor L2 with an MTT assay, an annexin V-FITC/PI test, a colorimetric assay, and immunoblotting. Euphorbia factor L2 showed potent cytotoxicity to A549 cells. Euphorbia factor L2 led to an increase in reactive oxygen species(ROS) generation,a loss of mitochondrial electrochemical potential, release of cytochrome c, activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase, suggesting that Euphorbia factor L2 induced apoptosis through a mitochondrial pathway. The cytotoxic activity of Euphorbia factor L2 in A549 cells and the related mechanisms of apoptotic induction provide support for the further investigation of caper euphorbia seeds.展开更多
文摘There were various problems in the determination of oil acid value of the national standard method, and this paper developed a low cost, simple and effective way to determine the acid value of oil and grease. Furthermore, the esterification of high acid Euphorbia lathyris L. oil (ELO) with methanol could be efficiently catalyzed by hydrochloric acid to produce biodiesel, and the influencing factors such as the amount of catalyst, reaction time, reaction temperature and molar ratio of oil to methanol were also studied. Under the optimized conditions with the oil to methanol molar ratio of 1:30 and a reaction temperature of 70℃, 95.8% oil conversion was obtained within 40 min in the presence of only 2.0 wt% of catalyst. Therefore, the low-cost non-edible Euphorbia lathyris L. oil as a raw material had good potential for the synthesis of biodiesel in industry.
基金supported by National Natural Science Foundation of China (No. 81473320)Fund from Guangdong Science and Technology Department & Guangdong Academy of Traditional Chinese Medicine (2016A020226024)+1 种基金Fund of Guangdong Education Department (2015KTSCX112)the Science Fund of the Education Bureau of Guangzhou City (1201410039 and 2012C208)
文摘Euphorbia factor L2, a lathyrane diterpenoid isolated from caper euphorbia seed(the seeds of Euphorbia lathyris L.), has been traditionally applied to treat cancer. This article focuses on the cytotoxic activity of Euphorbia factor L2 against lung carcinoma A549 cells and the mechanism by which apoptosis is induced. We analyzed the cytotoxicity and related mechanism of Euphorbia factor L2 with an MTT assay, an annexin V-FITC/PI test, a colorimetric assay, and immunoblotting. Euphorbia factor L2 showed potent cytotoxicity to A549 cells. Euphorbia factor L2 led to an increase in reactive oxygen species(ROS) generation,a loss of mitochondrial electrochemical potential, release of cytochrome c, activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase, suggesting that Euphorbia factor L2 induced apoptosis through a mitochondrial pathway. The cytotoxic activity of Euphorbia factor L2 in A549 cells and the related mechanisms of apoptotic induction provide support for the further investigation of caper euphorbia seeds.