This paper aims to analyze the research on the current situation of water-saving agriculture development in Europe. Water-saving agriculture in Europe started early, governments and farmers in various countries have a...This paper aims to analyze the research on the current situation of water-saving agriculture development in Europe. Water-saving agriculture in Europe started early, governments and farmers in various countries have a strong awareness of water-saving in agriculture and have achieved certain results. Due to the global spread of the COVID-19 pandemic, the lack of up-to-date field research, the complexity of various agricultural disciplines and categories, and the lack of information sharing, the current cognition of recent progress in the development of water-saving agriculture in Europe is not comprehensive enough. This paper selects four representative European countries: Spain, Germany, Italy, and Denmark as the research objects. Based on the existing research of Chinese and Western scholars, this paper analyzes and studies the current situation of water-saving agriculture in Europe. It has far-reaching significance for other countries in the world to have further development in water-saving agriculture and to protect water resources.展开更多
Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible fo...Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types. This paper concentrates on the vulnerability of such water types to the introduction of exotic species. This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves. We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated). Numerical values used in the formula have been found by scoring a number of properties in different water types and species, which are specified in questionnaires. The results of the calculations are given as relative vulnerability scores (scale 1-10). By testing as many as 8 water types and 13 species, we demonstrate that this method is flexible and easy to use for water managers. Our results can be translated into classes of vulner- ability, which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies. This readily corresponds to the way countries are required to report to the European Union in the context of the WFD. The method can also be generalized using functional groups of (exotic) species instead of particular species展开更多
From 2009 until 2012 the project“Watershed Management of Forest Land in Beijing,Restoration of Small Water Bodies(SWBR)”was implemented,combining Close to Nature Forest Management and Restoration of Small Water Bodi...From 2009 until 2012 the project“Watershed Management of Forest Land in Beijing,Restoration of Small Water Bodies(SWBR)”was implemented,combining Close to Nature Forest Management and Restoration of Small Water Bodies.The targets were to improve flood control,to enhance the ecological conditions by copying nature and to support the recreational value of small water bodies,all in cooperation with people living there.The efficiency of each project was proofed by comparison of biological and hydro-morphological assessment before the projects started and 2-3 years after they were finished.The results confirmed the ecological improvements of the restored river sections and showed the achievements.Guidelines to assess the biological and hydro-morphological status of rivers were developed and there are plans to introduce them as Beijing Standards.Planning and implementation of measures,based on experiences in Central Europe,will be documented in a handbook.&2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press.Production and Hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
文摘This paper aims to analyze the research on the current situation of water-saving agriculture development in Europe. Water-saving agriculture in Europe started early, governments and farmers in various countries have a strong awareness of water-saving in agriculture and have achieved certain results. Due to the global spread of the COVID-19 pandemic, the lack of up-to-date field research, the complexity of various agricultural disciplines and categories, and the lack of information sharing, the current cognition of recent progress in the development of water-saving agriculture in Europe is not comprehensive enough. This paper selects four representative European countries: Spain, Germany, Italy, and Denmark as the research objects. Based on the existing research of Chinese and Western scholars, this paper analyzes and studies the current situation of water-saving agriculture in Europe. It has far-reaching significance for other countries in the world to have further development in water-saving agriculture and to protect water resources.
文摘Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types. This paper concentrates on the vulnerability of such water types to the introduction of exotic species. This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves. We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated). Numerical values used in the formula have been found by scoring a number of properties in different water types and species, which are specified in questionnaires. The results of the calculations are given as relative vulnerability scores (scale 1-10). By testing as many as 8 water types and 13 species, we demonstrate that this method is flexible and easy to use for water managers. Our results can be translated into classes of vulner- ability, which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies. This readily corresponds to the way countries are required to report to the European Union in the context of the WFD. The method can also be generalized using functional groups of (exotic) species instead of particular species
文摘From 2009 until 2012 the project“Watershed Management of Forest Land in Beijing,Restoration of Small Water Bodies(SWBR)”was implemented,combining Close to Nature Forest Management and Restoration of Small Water Bodies.The targets were to improve flood control,to enhance the ecological conditions by copying nature and to support the recreational value of small water bodies,all in cooperation with people living there.The efficiency of each project was proofed by comparison of biological and hydro-morphological assessment before the projects started and 2-3 years after they were finished.The results confirmed the ecological improvements of the restored river sections and showed the achievements.Guidelines to assess the biological and hydro-morphological status of rivers were developed and there are plans to introduce them as Beijing Standards.Planning and implementation of measures,based on experiences in Central Europe,will be documented in a handbook.&2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press.Production and Hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).