Low-temperature fired ferrites or ceramics are usually processed by using low-melting materials(e.g.,glasses,oxides,and eutectics)as sintering aids to obtain compact and uniform microstructures.Herein,a dual-strategy ...Low-temperature fired ferrites or ceramics are usually processed by using low-melting materials(e.g.,glasses,oxides,and eutectics)as sintering aids to obtain compact and uniform microstructures.Herein,a dual-strategy of co-doping with V_(2)O_(5)and Sb_(2)O_(3)oxides and forming a eutectic liquid phase has been employed to reduce the melting point of LiZn ferrite ceramics in an effective way.The results indicate that miniscule amounts of V_(2)O_(5)and Sb_(2)O_(3)co-doping contribute in producing dense and uniform microstructures with enhanced magnetic performance by low-temperature firing.The phase structural and microstructural evolutions have been studied in detail.Thereafter their correlations with magnetic properties have been revealed.Enhanced magnetic performance(B_(s)=475.4 mT,M_(s)=82.51 emu/g,B_(r)/B_(s)=0.85,H_(c)=2.2 Oe,ΔH=153.8 Oe)of the LiZn-based ferrite ceramics is achieved by optimized composition and microstructure,which shows great potential for microwave applications including phase shifters and radars.More importantly,such a co-doping strategy can be also extended to other material systems,like dielectric ceramics,hexagonal ferrites or piezoelectric ceramics.展开更多
基金partly supported by“Double First-Rate of China”the National Natural Science Foundation of China(grant no.61734002)+1 种基金“the Fundamental Research Funds for Central Universities”(grant no.20826041D4125)the Sichuan Science and Technology Program(grant nos.2020JDR0016 and 2020ZDZX0008)
文摘Low-temperature fired ferrites or ceramics are usually processed by using low-melting materials(e.g.,glasses,oxides,and eutectics)as sintering aids to obtain compact and uniform microstructures.Herein,a dual-strategy of co-doping with V_(2)O_(5)and Sb_(2)O_(3)oxides and forming a eutectic liquid phase has been employed to reduce the melting point of LiZn ferrite ceramics in an effective way.The results indicate that miniscule amounts of V_(2)O_(5)and Sb_(2)O_(3)co-doping contribute in producing dense and uniform microstructures with enhanced magnetic performance by low-temperature firing.The phase structural and microstructural evolutions have been studied in detail.Thereafter their correlations with magnetic properties have been revealed.Enhanced magnetic performance(B_(s)=475.4 mT,M_(s)=82.51 emu/g,B_(r)/B_(s)=0.85,H_(c)=2.2 Oe,ΔH=153.8 Oe)of the LiZn-based ferrite ceramics is achieved by optimized composition and microstructure,which shows great potential for microwave applications including phase shifters and radars.More importantly,such a co-doping strategy can be also extended to other material systems,like dielectric ceramics,hexagonal ferrites or piezoelectric ceramics.