期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Numerical simulation on boiling heat transfer of evaporation cooling in a billet reheating furnace
1
作者 冯明杰 王恩刚 +2 位作者 王海 李艳东 刘兵 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1515-1524,共10页
The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπ... The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure. 展开更多
关键词 FURNACE evaporation cooling subcooled flow boiling support tube two-fluid model
下载PDF
Enhanced Evaporation of Ternary Mixtures in Porous Medium with Microcolumn Configuration
2
作者 Bo Zhang Yunxie Huang +4 位作者 Peilin Cui Zhiguo Wang Duo Ding Zhenhai Pan Zhenyu Liu 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期997-1016,共20页
The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address ... The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address these challenges,a volume of fluid(VOF)model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures(water,glycerol,and 1,2-propylene glycol)in porous ceramics in this study.It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation,causing the fluctuations in evaporation rates.The obtained result shows a significant increase in water evaporation rates with decreasing the microcolumn size.At a pore size of 30μm and a porosity of 30%,an optimal balance between capillary forces and flow resistance yields a peak water release rate of 96.0%.Furthermore,decreasing the glycerol content from 70%to 60%enhances water release by 10.6%.The findings in this work propose the approaches to optimize evaporative cooling technologies by controlling the evaporation of mixtures in porous media. 展开更多
关键词 Ternary mixtures porous medium evaporation numerical simulation evaporative cooling
下载PDF
Evaporative Cooling Applied in Thermal Power Plants:A Review of the State-ofthe-Art and Typical Case Studies 被引量:1
3
作者 Tiantian Liu Huimin Pang +7 位作者 Suoying He Bin Zhao Zhiyu Zhang Jucheng Wang Zhilan Liu Xiang Huang Yuetao Shi Ming Gao 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2229-2265,共37页
A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-coo... A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption. 展开更多
关键词 Direct evaporative cooling cooling tower cooling performance wet media nozzle spray thermal power plants
下载PDF
Modelling and Solution of a Ablation-Transpiration Cooling Control Systems
4
作者 郭宝珠 郝涌 《Journal of Beijing Institute of Technology》 EI CAS 1994年第2期114-121,共8页
A controlled model of thermal shield of ablation with trapspiration cooling is develoed. The existence and uniqueness of the classical solution can be obtained by Friedman and Jiang's methods. The positivity of th... A controlled model of thermal shield of ablation with trapspiration cooling is develoed. The existence and uniqueness of the classical solution can be obtained by Friedman and Jiang's methods. The positivity of the solution is proved and the conditions for the coolant flux under which the abladtion process will complete in finite time are also determined. Finally, we show the existence of critical coolant flux beyond which the ablation material begin melting. 展开更多
关键词 ablation evaporative cooling dristributed parameter system the boundary
下载PDF
Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap 被引量:1
5
作者 孙慧 王振霞 +3 位作者 王琴 李兴佳 刘建平 印建平 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期196-205,共10页
We propose a novel optical-access opened electrostatic trap to study the Stark-potential evaporative cooling of polar molecules by using two charged disk electrodes with a central hole of radius r0 = 1.5 mm, and deriv... We propose a novel optical-access opened electrostatic trap to study the Stark-potential evaporative cooling of polar molecules by using two charged disk electrodes with a central hole of radius r0 = 1.5 mm, and derive a set of new analytical equations to calculate the spatial distributions of the electrostatic field in the above charged-disk layout. Afterwards, we calculate the electric-field distributions of our electrostatic trap and the Stark potential for cold ND3 molecules, and analyze the dependences of both the electric field and the Stark potential on the geometric parameters of our charged-disk scheme, and find an optimal condition to form a desirable trap with the same trap depth in the x, y, and z directions. Also, we propose a desirable scheme to realize an efficient loading of cold polar molecules in the weak-field-seeking states, and investigate the dependences of the loading efficiency on both the initial forward velocity of the incident molecular beam and the loading time by Monte Carlo simulations. Our study shows that the maximal loading efficiency of our trap scheme can reach about 95%, and the corresponding temperature of the trapped cold molecules is about 28.8 inK. Finally, we study the Stark-potential evaporative cooling for cold polar molecules in our trap by the Monte Carlo method, and find that our simulated evaporative cooling results are consistent with our developed analytical model based on trapping-potential evaporative cooling. 展开更多
关键词 evaporative cooling electrostatic trap Monte Carlo simulations
下载PDF
Surface-induced evaporative cooling
6
作者 柯敏 颜波 +1 位作者 程锋 王育竹 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4274-4280,共7页
The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to... The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is 〈 100 ttm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is 〉 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required. 展开更多
关键词 atom chip atom-surface distance surface-induced evaporative cooling
下载PDF
Light-induced evaporative cooling in a magneto-optical trap
7
作者 马红玉 成华东 +1 位作者 王育竹 刘亮 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4180-4183,共4页
This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These a... This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source. 展开更多
关键词 evaporative cooling magneto-optical trap
下载PDF
Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms
8
作者 Tian-You Gao Dong-Fang Zhang +2 位作者 Ling-Ran Kong Rui-Zong Li Kai-Jun Jiang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第8期58-61,共4页
We experimentally observe the dynamic evolution of atoms in the evaporative cooling, by in-situ imaging the plugged hole of ultracold atoms. Ultracold rubidium atoms confined in a magnetic trap are plugged using a blu... We experimentally observe the dynamic evolution of atoms in the evaporative cooling, by in-situ imaging the plugged hole of ultracold atoms. Ultracold rubidium atoms confined in a magnetic trap are plugged using a blue-detuned laser beam with a waist of 20 m at a wavelength of 767 nm. We probe the variation of the atomic temperature and width versus the radio frequency in the evaporative cooling. Both the behaviors are in good agreement with the calculation of the trapping potential dressed by the rf signal above the threshold temperature,while deviating from the calculation near the phase transition. To accurately obtain the atomic width, we use the plugged hole as the reference to optimize the optical imaging system by precisely minimizing the artificial structures due to the defocus effect. 展开更多
关键词 Observation of Atomic Dynamic Behaviors in the Evaporative cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms
下载PDF
Mixed-field effect at the hyperfine level of^(127)I^(79)Br in its rovibronic ground state:Toward field manipulation of cold molecules
9
作者 包正斌 王得富 +2 位作者 邵旭萍 黄云霞 杨晓华 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期312-317,共6页
The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecu... The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecular total angular momentum excluding nuclear spin,M_J is the projection number of J,I_(1) and I_(2) are the nuclear spins of the iodine and bromine atoms,and M_(1) and M_(2) are the projection numbers of I_(1) and I_(2),respectively.When the two applied electric and magnetic fields are parallel,the perturbations are rare and only one perturbation is observed in a relatively large field regime in our computation range.However,when the two fields are off-parallel,the perturbations increase significantly and some sublevels show the Feshbach-like resonance phenomenon.Therefore,such sublevels transit between weak-field seeking and strong-field seeking repeatedly,which can be utilized to enhance or suppress cold molecular collision and chemical reaction rates.Such behavior of the molecular hyperfine structure in the mixed off-parallel fields may also be utilized to construct an electric-field-assisted anti-Helmholtz magnetic trap for cold molecules and to realize evaporative cooling of cold molecules(sub-mK)into the ultracold regime(μK). 展开更多
关键词 hyperfine structure mixed Zeeman and Stark effect evaporative cooling IBr molecule
下载PDF
Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler
10
作者 Tiezhu Sun Huan Sun +2 位作者 Tingzheng Tang Yongcheng Yan Peixuan Li 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2519-2531,共13页
The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need... The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)). 展开更多
关键词 Tubular indirect evaporative cooler integrated convection heat transfer coefficient evaporative cooling thermal engineering calculation energy saving
下载PDF
Radiative-coupled evaporative cooling:Fundamentals,development,and applications
11
作者 Li Yu Yimou Huang +4 位作者 Weihong Li Changmin Shi Brian W.Sheldon Zhuo Chen Meijie Chen 《Nano Research Energy》 2024年第2期56-68,共13页
As global energy demand continues to rise and climate change accelerates,the need for sustainable and energy-efficient cooling solutions has reached a critical level.Conventional air conditioning systems heavily rely ... As global energy demand continues to rise and climate change accelerates,the need for sustainable and energy-efficient cooling solutions has reached a critical level.Conventional air conditioning systems heavily rely on energy-intensive mechanical cooling,which significantly contributes to both electricity demand and greenhouse gas emissions.Passive cooling strategies,particularly radiative cooling(RC)and evaporative cooling(EC),present an alternative approach by harnessing natural processes for temperature regulation.While standalone RC can be affected by weather conditions and EC relies on water availability,Radiative-coupled EC(REC)offers a versatile and sustainable cooling solution suitable for various applications.Here we summarize an overview of the theoretical foundations and mathematical models of REC,encompassing REC by bulk water(REC-BW),REC by perspiration(REC-P),and REC by sorbed water(REC-SW).Moreover,we explore a range of applications,spanning from industrial processes to personal thermal management,and examine the advantages and challenges associated with each REC approach.The significance of REC lies in its potential to revolutionize cooling technology,reduce energy consumption,and minimize the environmental impact.REC-BW can conserve water resources in industrial cooling processes,while REC-P offers innovative solutions for wearable electronics and textiles.REC-SW’s adaptability makes it suitable for food preservation and future potable cooling devices.By addressing the challenges posed by REC,including water consumption,textile design,and optimization of bilayer structures,we can unlock the transformative potential of REC and contribute to sustainable cooling technologies in a warming world. 展开更多
关键词 radiative cooling evaporative cooling passive cooling thermal radiation mass transfer
原文传递
Thermoregulatory function and sexual dimorphism of the throat sack in Helmeted Guineafowl(Numida meleagris)across Africa 被引量:1
12
作者 Johann H.Van Niekerk Rodrigo Megía-Palma Giovanni Forcina 《Avian Research》 SCIE CSCD 2022年第3期239-248,共10页
The responses of ground-dwelling birds to heat and cold stress encompass a variety of behavioural,physiological and even morphological mechanisms.However,the role of glabrous skin in this respect has been marginally a... The responses of ground-dwelling birds to heat and cold stress encompass a variety of behavioural,physiological and even morphological mechanisms.However,the role of glabrous skin in this respect has been marginally addressed so far.The Helmeted Guineafowl(Numida meleagris)is a landfowl distributed across Sub-Saharan Africa with eight traditionally recognised extant subspecies.Among the most prominent morphological traits underlying intraspecific variability are size and pigmentation of the bare throat skin(or sack),which might be related to the different habitats and environmental conditions across its wide range.In order to explore the Helmeted Guineafowl range-wide sack variation and pigmentation in relation to thermoregulation and sexual signalling,we collected morphometric and environmental information for N.m.coronata integrating field data with the inspection of photographic material encompassing seven subspecies and environmental information from their habitats.Field data evidenced that sack size was significantly correlated with ambient temperature,thus pointing to a likely involvement of the throat sack in thermoregulation.When the pictorial data from all subspecies were pooled,sack size correlated negatively with biomass,rainfall and humidity,while a positive correlation was found with annual solar irradiation.Sack size correlated positively with monthly temperature variation among the bluethroated subspecies from southern Africa as opposed to the black-throated subspecies ranging north to Zambia and Mozambique.Still,in this latter group the sack was often larger during winter months,possibly to maximise solar radiation absorbance.Noteworthy,sack size was related to sex dimorphism in two subspecies.Sack morphology and colour in the Helmeted Guineafowl likely modulate body temperature by evaporative cooling or heating upon needs,but in some subspecies it is also seemingly related to sexual signalling.Additional studies are needed to fully understand the multifunctionality of this important morphological feature in this species. 展开更多
关键词 Evaporative cooling Helmeted guineafowl Sexual size dimorphism Sub-Saharan Africa THERMOREGULATION Throat sack
下载PDF
Evaporative/radiative electrospun membrane for personal cooling 被引量:4
13
作者 Mohammad Irfan Iqbal Shuo Shi +1 位作者 Gokula Manikandan Senthil Kumar Jinlian Hu 《Nano Research》 SCIE EI CSCD 2023年第2期2563-2571,共9页
Functional textiles that promote daily comfort and productivity must efficiently release body sweats and transmit radiative heat through sweat evaporation and mid-infrared radiation(MIR)(8–13μm).However,most of the ... Functional textiles that promote daily comfort and productivity must efficiently release body sweats and transmit radiative heat through sweat evaporation and mid-infrared radiation(MIR)(8–13μm).However,most of the traditional clothing cannot provide simultaneous sweat evaporation and mid-infrared radiation transmission efficiently,leading to a poor design of personal cooling wearables.Herein,an evaporative/radiative integrated functional fibrous electrospun membrane is meticulously designed and controllably fabricated via facile electrospinning technology for personal cooling management.The developed membrane can be applied as a smart wearable with distinct personal thermal management applications.The promising temperature and humidity responsive vapor transmission of the membrane grants 1.2 times of evaporative cooling than that of traditional cotton.Besides,based on its high mid-infrared radiation transmission(53%)property in the range of 8–13μm,the as-spun membrane provides extra cooling of 1.5°C than that of cotton.Moreover,the building energy saving performances demonstrated that 47.1%annual building cooling can be achieved using the developed electrospun membrane.In general,the evaporative/radiative electrospun membrane creates a passive cooling microclimate for the human body,meeting the growing demand of wearable for personal cooling. 展开更多
关键词 building energy cooling management ELECTROSPINNING evaporative cooling radiative cooling
原文传递
Bright-white hydrogels for on-demand passive cooling 被引量:2
14
作者 Meng Yang Weizhi Zou +3 位作者 Heng Luo Yong Liu Ning Zhao Jian Xu 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第5期1511-1519,共9页
Passive cooling permits thermal management of near-zero energy consumption and low CO_(2)emissions.Despite significant progress of passive radiative coolers,comfortable and steady temperatures can hardly be achieved d... Passive cooling permits thermal management of near-zero energy consumption and low CO_(2)emissions.Despite significant progress of passive radiative coolers,comfortable and steady temperatures can hardly be achieved due to their inadequate daytime cooling power(below 0.2 k W m^(-2))yet over-cooling at night.Here,we provide a bright-white hydrogel that enables ondemand passive cooling by virtue of adaptive water evaporation and high solar reflectance up to 86.1%.Notably,theoretical cooling power determined by the evaporating rate can reach 1.25 k W m^(-2)in daytime but decreases dramatically at night.Hence sub-ambient temperature reduction of 11-13℃at noon yet nearly none at night are realized,with the diurnal temperature difference narrowed significantly.Moreover,effective cooling using colored hydrogels,and transition from evaporative cooling to solar heating have been demonstrated.This novel evaporative cooling approach will pave the way for smart passive coolers of high efficiency,colorful appearance,and low cost. 展开更多
关键词 bi-continuous structure dew point diurnal temperature variation evaporative cooling solar reflection
原文传递
Research status and development trends of evaporative cooling air-conditioning technology in data centers 被引量:8
15
作者 Junjie Chu Xiang Huang 《Energy and Built Environment》 2023年第1期86-110,共25页
This paper systematically describes the technical principles,evaluation indicators,system forms and research progress of air-side evaporative cooling air conditioning systems,water-side evaporative cooling air conditi... This paper systematically describes the technical principles,evaluation indicators,system forms and research progress of air-side evaporative cooling air conditioning systems,water-side evaporative cooling air conditioning systems and freon-side evaporative cold coagulation heat air conditioning systems of Data center.In order to reduce the energy consumption of the refrigeration and air-conditioning system in the Data center,the applica-tion conditions and scenarios of the different forms of evaporative cooling air-conditioning systems should be considered comprehensively.Therefore,it is very important that the renewable energy-dry air can be used to the greatest extent.These efforts would contribute to China’s 2030"Carbon Peak"and 2060"Carbon Neutral." 展开更多
关键词 Data center Evaporative cooling Air-side Water-side Freon-side
原文传递
Performance analysis and optimization of free cooling strategies for a liquid-cooled data center 被引量:1
16
作者 Weinan Zhou Qin Sun +4 位作者 Weimin Luo Wei Xiao Pengfei Cui Wei Wu Kaijun Dong 《Building Simulation》 SCIE EI CSCD 2023年第8期1317-1330,共14页
The increasing power density of IT electronics and the enormous energy consumption of data centers lead to the urgent demand for efficient cooling technology.Due to its efficiency and safety,liquid-cooled heat sink te... The increasing power density of IT electronics and the enormous energy consumption of data centers lead to the urgent demand for efficient cooling technology.Due to its efficiency and safety,liquid-cooled heat sink technology may gradually replace air-cooled technology over time.With the ambient or higher water supply temperature,the liquid-cooled technology shortens the operating time of the chiller and improves its coefficient of performance,while the pump power consumption may increase for satisfying the constant cooling capacity.Therefore,it is significant to study the optimal water supply temperature to achieve energy-efficient operation of data centers.A virtual 30.1 kW data center is considered as the case,the liquid-cooled system is constructed with a combination of innovative manifold microchannel heat sink with oblique fins and indirect evaporative cooling technology to minimize energy consumption.A hybrid thermal management model integrating the heat dissipation model and the power consumption model is established by TRNSYS and FLUENT software.To the highest chip-safe operating temperature premise,the energy performance is analyzed under various water supply temperatures in Guangzhou.The result shows that only 21.5-hour mechanical cooling is needed with the 30℃server inlet temperature throughout the year.And the minimized power consumption occurs with the constant 29℃server inlet temperature.Moreover,the temperature adaptive control strategy(TACS)is adopted to test the cooling system power consumption under different regulation frequencies,and the by-week TACS can achieve another 11.5%energy saving than the minimum power consumption of the constant temperature control strategy. 展开更多
关键词 data center liquid cooling system manifold microchannel heat sink indirect evaporative cooling control strategy
原文传递
Analysis of Using the M-cycle Regenerative-Humidification Process on a Gas Turbine 被引量:1
17
作者 Peter Jenkins Martin Cerza Mohammad A1 Saaid 《Journal of Energy and Power Engineering》 2014年第11期1824-1837,共14页
This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as th... This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as the MCTC (Maisotsenko combustion turbine cycle), was formed. The MCTC used an indirect evaporative air cooler as a saturator with a gas turbine engine. The saturator was applied on the side of the turbine exhaust (M-cycle#2) in the analysis. The analysis included calculations and the development of an EES (engineering equation solver) code to model the MCTC system performance. The resulting performance curves were graphed to show the effects of several parameters on the thermal efficiency and net power output of the gas turbine engine. The models were also compared with actual experimental test that results from a gas turbine engine. Conclusions and discussions of results are also given. 展开更多
关键词 Gas turbine Brayton cycle evaporative cooling.
下载PDF
Water, land, and energy use efficiencies and financial evaluation of air conditioner cooled greenhouses based on field experiments
18
作者 Ibtihal AL-MANTHRIA Abdulrahim M AL-ISMAILIA +2 位作者 Hemesiri KOTAGAMAB Mumtaz KHANC L H Janitha JEEWANTHAD 《Journal of Arid Land》 SCIE CSCD 2021年第4期375-387,共13页
High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial asp... High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop. 展开更多
关键词 land use efficiency energy use efficiency water use efficiency gross water use efficiency financial evaluation air conditioner cooled greenhouse evaporative cooled greenhouse
下载PDF
Applying Neural Network in Evaporative Cooler Performance Prediction
19
作者 强天伟 沈恒根 +1 位作者 黄翔 宣永梅 《Journal of Donghua University(English Edition)》 EI CAS 2007年第3期400-403,共4页
The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air cond... The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air conditioner are obtained. Some experiment data are used to train the network until these data can approximate a function, then, simulate the network with the remanent data. The predicted result shows satisfying effects. 展开更多
关键词 neural network direct evaporative cooling airconditioner (evaporative cooler) TRAIN simulate
下载PDF
The Microclimatic Influence of a Water Body on an Urban Environment
20
作者 Erico Masierc Lea Cristina Lucas de Souza 《Journal of Environmental Science and Engineering(B)》 2013年第8期453-459,共7页
The paper aims to investigate the potential of a water body to influence in lowering the warmth in the city of Sao Jose do Rio Preto, Brazil, due to the evaporative cooling effects. In order to verify its potential, t... The paper aims to investigate the potential of a water body to influence in lowering the warmth in the city of Sao Jose do Rio Preto, Brazil, due to the evaporative cooling effects. In order to verify its potential, three collecting points of temperature and humidity were placed in an urban area close to the municipal dam. The first one was placed on the dam margin, the second one, 50 m distant of the margin and, the third one, 100 m distant. The data were taken during December 2010 and then compared to the climate data of the Climate Station of CIIAGRO-Integrated Center of Agro Meteorological. The results show that the closer the collection point is to the water body, and the lower is the temperature variation. The humidity taxes verified at the closest point to the water body indicate values higher than those ones collected at the most distant point. The insertion of moisture through the water bodies in an urban environment demonstrated to be a strategy that improved the thermal conditions and has to be considered for urban planners to establish strategies of urban occupation. 展开更多
关键词 Water body thermal comfort evaporative cooling.
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部