In this study, a new mass model involving superheat, initial temperature, liquid height, evaporator diameter, and flashing time is established to describe the flash evaporation process of water film. Of 469 sets of fl...In this study, a new mass model involving superheat, initial temperature, liquid height, evaporator diameter, and flashing time is established to describe the flash evaporation process of water film. Of 469 sets of flash experimental data from three previous researches, 305 sets were applied to optimize parameters, and the other 164 sets were used to verify the practicability of the model. The results showed that the mean relative error between the literature data and the model values was less than 16.3%, and the model statistics proved that the model was well-posed. Then, the kinetic model was obtained using the time derivative of the new mass model. Computational fluid dynamics simulation of water film flash evaporation was studied based on a user-defined function program of the new evaporation kinetic model. The new kinetic model shows more consistency with the experimental phenomena in terms of evaporated mass and temperature compared with the evaporation–condensation model in Fluent software and Gopalakrishna's model. This new kinetic model can be extended to describe the flash process of water solution under other conditions.展开更多
The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets' evaporation character wa...The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets' evaporation character was measured in a quiescent high-temperature environment by micro high-speed camera system. The gasoline and kerosene experimental results are consistent with the reference data. Methanol, common kerosene and aviation kerosene droplet evaporation characteristics, as well as their evaporation rate changing with temperature, were obtained. The evaporation rate experimental data were compared with the prediction result of Ranz-Marshall boiling temperature model(RMB), Ranz-Marshall low-temperature model(RML), drift flux model(DFM), mass analogy model(MAM), and stagnant film model(SFM). The disparity between the experimental data and the model prediction results was mainly caused by the neglect of the natural convection effect, which was never introduced into the droplet evaporation concept. A new droplet evaporation model with consideration of natural convection buoyancy force effect was proposed in this paper. Under the experimental conditions in this paper, the calculation results of the new droplet evaporation model were agreed with the experimental data for kerosene, methanol and other fuels, with less than 20% relative deviations. The relative deviations between the new evaporation model predictions for kerosene and the experimental data from the references were within 10%.展开更多
In order to investigate the high-temperature evaporation characteristics of multicomponent liquid fuel,three kinds of blended fuel:n-heptane/n-decane/RP-3 aviation kerosene-ethanol were experimentally studied with and...In order to investigate the high-temperature evaporation characteristics of multicomponent liquid fuel,three kinds of blended fuel:n-heptane/n-decane/RP-3 aviation kerosene-ethanol were experimentally studied with and without forced convection.Further,based on zerodiffusion and infinite diffusion concept,this study expanded Thick Exchange Layer evaporation model with Natural Convection effect(NC-TEL)to multicomponent liquid fuels.The experimental results show that the droplet evaporation rate increases significantly with the increase of ambient temperature.Higher temperature leads to more significant relationships between the composition ratio and the evaporation rate.The effect of forced convection is not obviously under the circumstance in this paper.Then,the evaporation models were validated by experimental data.In general,the new NC-TEL model behaves better than the Ranz-Marshall(R-M)model,and the prediction accuracy at high temperature is improved by 8%to 35%.In lower temperature conditions,the prediction of zero-diffusion NC-TEL model is better than the infinite diffusion NC-TEL model.In high-temperature conditions,for n-heptane-ethanol droplet,the predictions of NC-TEL model are accurate,but for n-decane/RP-3 aviation kerosene-ethanol,the predictions are lower than experimental results.This may be caused by the micro-explosion phenomenon and the Marangoni phenomenon.展开更多
Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment o...Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment over the sea because of its wide distribution and frequent occurrence. It has become a research focus of the navies all over the world. At present, the diagnostic models of the evaporation duct are all based on the Monin-Obukhov similarity theory, with only differences in the flux and character scale calculations in the surface layer. These models are applicable to the stationary and uniform open sea areas without considering the alongshore effect. This paper introduces the nonlinear factor a and the gust wind item wg into the Babin model, and thus extends the evaporation duct diagnostic model to the offshore area under extremely low wind speed. In addition, an evaporation duct prediction model is designed and coupled with the fifth generation mesoscale model (MMS). The tower observational data and radar data at the Pingtan island of Fujian Province on May 25-26, 2002 were used to validate the forecast results. The outputs of the prediction model agree with the observations from 0 to 48 h. The relative error of the predicted evaporation duct height is 19.3% and the prediction results are consistent with the radar detection.展开更多
Evaporation is a key process in a wide range of industrial applications.To gain a better insight into this process,investigation on the evaporation model is an important aspect.In the present study,it is found that th...Evaporation is a key process in a wide range of industrial applications.To gain a better insight into this process,investigation on the evaporation model is an important aspect.In the present study,it is found that the computation with the Hertz-KnudsenSchrage model is not easy to converge in the numerical simulation of the evaporation with multicomponent gas.The reason for the divergence is that the Hertz-Knudsen-Schrage model will lead to an improper vapor mass fraction which is much larger than the saturated vapor mass fraction in the iterations.To improve the convergence performance,an improved model for evaporation with multicomponent gas is proposed.In the improved evaporation model,when the predicted vapor density is larger than the saturated vapor density,a strategy that calculates the volumetric mass transfer rate with the difference between the saturated vapor density and the current vapor density will be implemented.As a result,the vapor density is bounded by the saturated values and no improper large vapor mass fraction arises in the iterations.The improved evaporation model shows much better convergence performance.In the case of the present study,the improved evaporation model can converge with the time step of 5×10^(-6)s,while the original Hertz-Knudsen-Schrage model cannot converge with the time step of 5×10^(-9)s.The improved evaporation model is also compared with the empirical correlations and shows a good agreement.展开更多
The soil-atmosphere interaction was investigated through laboratory testing,field monitoring and numerical monitoring.In the laboratory,the soil water evaporation mechanisms were studied using an environmental chamber...The soil-atmosphere interaction was investigated through laboratory testing,field monitoring and numerical monitoring.In the laboratory,the soil water evaporation mechanisms were studied using an environmental chamber equipped with a large number of sensors for controlling both the air parameters and soil parameters.Both sand and clay were considered.In case of sand,a dry layer could be formed during evaporation in the near surface zone where the suction corresponded to the residual volumetric water content.The evaporative surface was situated at a depth where the soil temperature was the lowest.In case of clay,soil cracking occurred,changing the evaporative surface from one-dimensional to three-dimensional nature.The suctionbased evaporation model was adapted to take these phenomena into account by adopting a function of dry layer evolution in the case of sand and by adopting a surface crack ratio and a retative humidity ratio in the case of clay.In the field,the volumetric water content,and the suction as well as the runoff were monitored for an embankment constructed with lime/cement treated soils.It appeared that using precipitation data only did not allow a correct description of the variations of volumetric water content and suction inside the soils,the consideration of water evaporation being essential.It was possible to use a correlation between precipiration and runoff.The hydraulic conductivity was found to be a key parameter controlling the variations of volumetric water content and suction.For the numerical modelling,a fully coupled thermohydraulic model was developed,allowing analyzing the changes in temperature,volumetric water content and suction of soil,with the upper boundary conditions at the interface between soil and atmosphere determined using meteorological data.Comparison between simulations and measurements showed the performance of such numerical approach.展开更多
This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereper...This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.展开更多
The combustion efficiency of a diesel engine depends not only on spray characteristics but also on fuel-air mixing characteristics. Based on the original spray model, a new spray model is established in this paper to ...The combustion efficiency of a diesel engine depends not only on spray characteristics but also on fuel-air mixing characteristics. Based on the original spray model, a new spray model is established in this paper to accurately predict the diesel spray, and then a multi-component evaporation model is added into it. The model takes the influence of component concentration gradient and species on its evaporation rate in the liquid phase into account. This paper studies the spray characteristics(spray penetration, spray angle and spray morphology) and fuel-air mixing characteristics(spray area, spray volume and air entrainment mass) using the spray model, and the results are compared with the experimental results. The comparison shows that the simulated spray penetration and spray angle are close to the experimental results with the average deviations less than 3%. Moreover, this paper studies the spray area, spray volume and air entrainment using empirical formula under different conditions. And the maximum deviations of the spray volume, spray area and air entrainment mass are less than 5% as compared with the test values. Overall, this spray model can predict the diesel spray characteristics and fuel-air mixing characteristics under high injection pressure accurately.展开更多
基金supported by the Scientific Research Special Fund of Marine Public Welfare Industry(No.20140508)National Natural Science Foundation of China(No.51478308)Natural Science Foundation of Tianjin(No.14JCYBJC23300)
文摘In this study, a new mass model involving superheat, initial temperature, liquid height, evaporator diameter, and flashing time is established to describe the flash evaporation process of water film. Of 469 sets of flash experimental data from three previous researches, 305 sets were applied to optimize parameters, and the other 164 sets were used to verify the practicability of the model. The results showed that the mean relative error between the literature data and the model values was less than 16.3%, and the model statistics proved that the model was well-posed. Then, the kinetic model was obtained using the time derivative of the new mass model. Computational fluid dynamics simulation of water film flash evaporation was studied based on a user-defined function program of the new evaporation kinetic model. The new kinetic model shows more consistency with the experimental phenomena in terms of evaporated mass and temperature compared with the evaporation–condensation model in Fluent software and Gopalakrishna's model. This new kinetic model can be extended to describe the flash process of water solution under other conditions.
基金supported by the National Natural Science Foundation of China (No. 51106006)
文摘The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets' evaporation character was measured in a quiescent high-temperature environment by micro high-speed camera system. The gasoline and kerosene experimental results are consistent with the reference data. Methanol, common kerosene and aviation kerosene droplet evaporation characteristics, as well as their evaporation rate changing with temperature, were obtained. The evaporation rate experimental data were compared with the prediction result of Ranz-Marshall boiling temperature model(RMB), Ranz-Marshall low-temperature model(RML), drift flux model(DFM), mass analogy model(MAM), and stagnant film model(SFM). The disparity between the experimental data and the model prediction results was mainly caused by the neglect of the natural convection effect, which was never introduced into the droplet evaporation concept. A new droplet evaporation model with consideration of natural convection buoyancy force effect was proposed in this paper. Under the experimental conditions in this paper, the calculation results of the new droplet evaporation model were agreed with the experimental data for kerosene, methanol and other fuels, with less than 20% relative deviations. The relative deviations between the new evaporation model predictions for kerosene and the experimental data from the references were within 10%.
基金co-supported by the National Key R&D Program of China(Nos.2017YFB0202400 and 2017YFB0202402)the National Natural Science Foundaion of China(No.91741125)。
文摘In order to investigate the high-temperature evaporation characteristics of multicomponent liquid fuel,three kinds of blended fuel:n-heptane/n-decane/RP-3 aviation kerosene-ethanol were experimentally studied with and without forced convection.Further,based on zerodiffusion and infinite diffusion concept,this study expanded Thick Exchange Layer evaporation model with Natural Convection effect(NC-TEL)to multicomponent liquid fuels.The experimental results show that the droplet evaporation rate increases significantly with the increase of ambient temperature.Higher temperature leads to more significant relationships between the composition ratio and the evaporation rate.The effect of forced convection is not obviously under the circumstance in this paper.Then,the evaporation models were validated by experimental data.In general,the new NC-TEL model behaves better than the Ranz-Marshall(R-M)model,and the prediction accuracy at high temperature is improved by 8%to 35%.In lower temperature conditions,the prediction of zero-diffusion NC-TEL model is better than the infinite diffusion NC-TEL model.In high-temperature conditions,for n-heptane-ethanol droplet,the predictions of NC-TEL model are accurate,but for n-decane/RP-3 aviation kerosene-ethanol,the predictions are lower than experimental results.This may be caused by the micro-explosion phenomenon and the Marangoni phenomenon.
文摘Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment over the sea because of its wide distribution and frequent occurrence. It has become a research focus of the navies all over the world. At present, the diagnostic models of the evaporation duct are all based on the Monin-Obukhov similarity theory, with only differences in the flux and character scale calculations in the surface layer. These models are applicable to the stationary and uniform open sea areas without considering the alongshore effect. This paper introduces the nonlinear factor a and the gust wind item wg into the Babin model, and thus extends the evaporation duct diagnostic model to the offshore area under extremely low wind speed. In addition, an evaporation duct prediction model is designed and coupled with the fifth generation mesoscale model (MMS). The tower observational data and radar data at the Pingtan island of Fujian Province on May 25-26, 2002 were used to validate the forecast results. The outputs of the prediction model agree with the observations from 0 to 48 h. The relative error of the predicted evaporation duct height is 19.3% and the prediction results are consistent with the radar detection.
文摘Evaporation is a key process in a wide range of industrial applications.To gain a better insight into this process,investigation on the evaporation model is an important aspect.In the present study,it is found that the computation with the Hertz-KnudsenSchrage model is not easy to converge in the numerical simulation of the evaporation with multicomponent gas.The reason for the divergence is that the Hertz-Knudsen-Schrage model will lead to an improper vapor mass fraction which is much larger than the saturated vapor mass fraction in the iterations.To improve the convergence performance,an improved model for evaporation with multicomponent gas is proposed.In the improved evaporation model,when the predicted vapor density is larger than the saturated vapor density,a strategy that calculates the volumetric mass transfer rate with the difference between the saturated vapor density and the current vapor density will be implemented.As a result,the vapor density is bounded by the saturated values and no improper large vapor mass fraction arises in the iterations.The improved evaporation model shows much better convergence performance.In the case of the present study,the improved evaporation model can converge with the time step of 5×10^(-6)s,while the original Hertz-Knudsen-Schrage model cannot converge with the time step of 5×10^(-9)s.The improved evaporation model is also compared with the empirical correlations and shows a good agreement.
基金the French Research Agency(ANR)within the Project Ter DOUEST ANR-07-PCGU-006-10。
文摘The soil-atmosphere interaction was investigated through laboratory testing,field monitoring and numerical monitoring.In the laboratory,the soil water evaporation mechanisms were studied using an environmental chamber equipped with a large number of sensors for controlling both the air parameters and soil parameters.Both sand and clay were considered.In case of sand,a dry layer could be formed during evaporation in the near surface zone where the suction corresponded to the residual volumetric water content.The evaporative surface was situated at a depth where the soil temperature was the lowest.In case of clay,soil cracking occurred,changing the evaporative surface from one-dimensional to three-dimensional nature.The suctionbased evaporation model was adapted to take these phenomena into account by adopting a function of dry layer evolution in the case of sand and by adopting a surface crack ratio and a retative humidity ratio in the case of clay.In the field,the volumetric water content,and the suction as well as the runoff were monitored for an embankment constructed with lime/cement treated soils.It appeared that using precipitation data only did not allow a correct description of the variations of volumetric water content and suction inside the soils,the consideration of water evaporation being essential.It was possible to use a correlation between precipiration and runoff.The hydraulic conductivity was found to be a key parameter controlling the variations of volumetric water content and suction.For the numerical modelling,a fully coupled thermohydraulic model was developed,allowing analyzing the changes in temperature,volumetric water content and suction of soil,with the upper boundary conditions at the interface between soil and atmosphere determined using meteorological data.Comparison between simulations and measurements showed the performance of such numerical approach.
文摘This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.
基金the Postgraduate Research & Practice Innovation Program of Jiangsu Province(No.SJCX17 0597)the Postgraduate Research & Practice Innovation Program of Jiangsu University of Science & Technology(No.YSJ16S-05)the National Natural Science Foundation of China(No.51606100)
文摘The combustion efficiency of a diesel engine depends not only on spray characteristics but also on fuel-air mixing characteristics. Based on the original spray model, a new spray model is established in this paper to accurately predict the diesel spray, and then a multi-component evaporation model is added into it. The model takes the influence of component concentration gradient and species on its evaporation rate in the liquid phase into account. This paper studies the spray characteristics(spray penetration, spray angle and spray morphology) and fuel-air mixing characteristics(spray area, spray volume and air entrainment mass) using the spray model, and the results are compared with the experimental results. The comparison shows that the simulated spray penetration and spray angle are close to the experimental results with the average deviations less than 3%. Moreover, this paper studies the spray area, spray volume and air entrainment using empirical formula under different conditions. And the maximum deviations of the spray volume, spray area and air entrainment mass are less than 5% as compared with the test values. Overall, this spray model can predict the diesel spray characteristics and fuel-air mixing characteristics under high injection pressure accurately.