Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in s...Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in surface light intensity caused by object vibration and provide a visual description of vibration behavior.Based on the analysis of the principle underlying the transformation of vibration behavior into event flow data by an event sensor,this paper proposes an algorithm to reconstruct event flow data into a relationship correlating vibration displacement and time to extract the amplitude-frequency characteristics of the vibration signal.A vibration measurement test platform is constructed,and feasibility and effectiveness tests are performed for the vibration motor and other power equipment.The results show that event-sensing technology can effectively perceive the surface vibration behavior of power and provide a wide dynamic range.Furthermore,the vibration measurement and visualization algorithm for power equipment constructed using this technology offers high measurement accuracy and efficiency.The results of this study provide a new noncontact and visual method for locating vibrations and performing amplitude-frequency analysis on power equipment.展开更多
Nanopore has been developed to be a powerful,single-molecule analytical tool for sensing ions,small organic molecules and biomacromolecules such as proteins and DNAs.Generally,the identity of the analyte can be reveal...Nanopore has been developed to be a powerful,single-molecule analytical tool for sensing ions,small organic molecules and biomacromolecules such as proteins and DNAs.Generally,the identity of the analyte can be revealed by current amplitude changes and mean dwell time of the analyte binding events.In some cases,generation of highly characteristic current events affords an alternative way of analyte determination with high confidence level.However,we found that secondary structures in DNA/RNA hybrids might severely hinder the generation of signature events during their translocation through?-hemolysin nanopore.In this report,we propose a strategy to add a certain concentration of urea in the buffer solution for single channel recordings and validate that low concentration of urea can effectively denature the secondary structures in DNA hybrids and recover the generation of signature events.This finding might be useful in other secondary structure-related nanopore sensing activities.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFB2604600).
文摘Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in surface light intensity caused by object vibration and provide a visual description of vibration behavior.Based on the analysis of the principle underlying the transformation of vibration behavior into event flow data by an event sensor,this paper proposes an algorithm to reconstruct event flow data into a relationship correlating vibration displacement and time to extract the amplitude-frequency characteristics of the vibration signal.A vibration measurement test platform is constructed,and feasibility and effectiveness tests are performed for the vibration motor and other power equipment.The results show that event-sensing technology can effectively perceive the surface vibration behavior of power and provide a wide dynamic range.Furthermore,the vibration measurement and visualization algorithm for power equipment constructed using this technology offers high measurement accuracy and efficiency.The results of this study provide a new noncontact and visual method for locating vibrations and performing amplitude-frequency analysis on power equipment.
基金the National Basic Research Program of China (2013CB932800)the National Natural Science Foundation of China (21175135, 21375130, 21205119, 21475132)the CAS Hundred Talents Program
文摘Nanopore has been developed to be a powerful,single-molecule analytical tool for sensing ions,small organic molecules and biomacromolecules such as proteins and DNAs.Generally,the identity of the analyte can be revealed by current amplitude changes and mean dwell time of the analyte binding events.In some cases,generation of highly characteristic current events affords an alternative way of analyte determination with high confidence level.However,we found that secondary structures in DNA/RNA hybrids might severely hinder the generation of signature events during their translocation through?-hemolysin nanopore.In this report,we propose a strategy to add a certain concentration of urea in the buffer solution for single channel recordings and validate that low concentration of urea can effectively denature the secondary structures in DNA hybrids and recover the generation of signature events.This finding might be useful in other secondary structure-related nanopore sensing activities.