We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs...It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.展开更多
The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed...The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed-time eventtriggered group consensus,are designed.It is demonstrated that there is no Zeno behavior under the designed eventtriggered control.Meanwhile,it is proved that for an arbitrary initial state of the system,group consensus within the settling time could be obtained under the proposed control protocols by using matrix analysis and graph theory.Finally,a series of numerical examples are propounded to illustrate the performance of the proposed control protocol.展开更多
Event-triggered control has been recent/y proposed as an effective strategy for the consensus of multi-agent systems. We present an improved distributed event-triggered control scheme that remedies a shortcoming of so...Event-triggered control has been recent/y proposed as an effective strategy for the consensus of multi-agent systems. We present an improved distributed event-triggered control scheme that remedies a shortcoming of some previous event- triggered control schemes in the literature. This improved distributed event-triggered method has no need for continuously monitoring each agent' neighbors. Moreover, each agent in the multi-agent systems will not exhibit the Zeno behavior. Numerical simulation results show the effectiveness of the proposed consensus control.展开更多
This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By ...This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.展开更多
The PC synchronization of a class of chaotic systems is investigated in this paper. The drive system is assumed to have only one state variable available. By constructing proper observers, some novel criteria for PC s...The PC synchronization of a class of chaotic systems is investigated in this paper. The drive system is assumed to have only one state variable available. By constructing proper observers, some novel criteria for PC synchronization are proposed via event-triggered control scheme. The Lii system and Chen system are taken as examples to demonstrate the efficiency of the proposed approach.展开更多
This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varyin...This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varying formation,a distributed control scheme is designed in an event-triggered way,in which for each agent the controller is triggered only at its own event times.The interaction topology among agents is assumed to be switching.The common Lyapunov function as well as Riccati inequality is applied to solve the time-varying formation problem.Moreover,the Zeno behavior of triggering time sequences can be excluded for each agent.Finally,a simulation example is presented to illustrate the effectiveness of the theoretical results.展开更多
This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger...This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.展开更多
This paper is devoted to event-triggered synchronization of delayed memristive neural networks with H∞and passivity performance.The aim is to guarantee the exponential synchronization and mixed H∞and passivity contr...This paper is devoted to event-triggered synchronization of delayed memristive neural networks with H∞and passivity performance.The aim is to guarantee the exponential synchronization and mixed H∞and passivity control for memristive neural networks by using event-triggered control.Firstly,a switching system is constructed under the event-triggered control strategy.Then,by adopting a piece-wise Lyapunov functional,a sufficient condition is established for the exponential synchronization and mixed H_(∞)and passivity performance.Moreover,an event-triggered controller design scheme is proposed using matrix decoupling method.Finally,the effectiveness of the designed controller is exemplified by a numerical example.展开更多
For islanded microgrids(MGs),distributed control is regarded as a preferred alternative to centralized control for the frequency restoration of MGs.However,distributed control with successive communication restricts t...For islanded microgrids(MGs),distributed control is regarded as a preferred alternative to centralized control for the frequency restoration of MGs.However,distributed control with successive communication restricts the efficiency and resilience of the control system.To address this issue,this paper proposes a distributed event-triggered control strategy for the frequency secondary control in islanded MGs.The proposed event-triggered control is Zeno behavior free and enables each DG to update and propagate its state to neighboring DGs only when a specific“event”occurs,which significantly reduces the communication burden.Compared with the existing event-triggered control,a trigger condition checking period of the proposed event-triggered control is provided to reduce the computation burden when checking the trigger condition.Furthermore,using the aperiodicity and intermittent properties of the communication,a simple detection principle is proposed to detect and isolate the compromised communication links in a timely and economic fashion,which improves the resilience of the system against FDI attacks.Finally,the control effectiveness of the proposed control scheme is validated by the simulation results of the tests on an MG with 4 DGs.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number...In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE...In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.展开更多
The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based regio...The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based region coverage control law and the adaptive tracking control law.The APF-based region coverage control law ensures the coverage task is achieved until every single stratospheric airship ends up performing station keeping where near the respective global minimum point,in which an innovative solution to the local minimum problem is put forward.The adaptive tracking control law is designed to realize motion control using tracking the desired velocity and angular velocity given by coverage control law,with the consideration of several practical control problems as unknown individual differences and external disturbances.To save resources,the combined self-/event-triggered mechanism designed therein significantly reduces the times of state information transmission and control law calculation.The effectiveness of the proposed control framework is verified through simulations.展开更多
In this paper we address the issue of output-feedback robust control for a class of feedforward nonlinear systems.Essentially different from the related literature,the feedback/input signals are corrupted by additive ...In this paper we address the issue of output-feedback robust control for a class of feedforward nonlinear systems.Essentially different from the related literature,the feedback/input signals are corrupted by additive noises and can only be transmitted intermittently due to the consideration of event-triggered communications,which bring new challenges to the control design.With the aid of matrix pencil based design procedures,regulating the output to near zero is globally solved by a non-conservative dynamic low-gain controller which requires only an a priori information on the upper-bound of the growth rate of nonlinearities.Theoretical analysis shows that the closed-loop system is input-to-state stable with respect to the sampled errors and additive noise.In particular,the observer and controller designs have a dual architecture with a single dynamic scaling parameter whose update law can be obtained by calculating the generalized eigenvalues of matrix pencils offline,which has an advantage in the sense of improving the system convergence rate.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
基金supported in part by the National Natural Science Foundation of China(61933012,62273064,61991400,61991403,62250710167,61860206008,62203078)the National Key Research and Development Program of China(2023YFA1011803)+2 种基金the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Innovation Support Program for Inter national Students Returning to China(cx2022016)the Central University Project(2022CDJKYJH019).
文摘It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.
基金Project supported by the Graduate Student Research Innovation Project of Chongqing(Grant No.CYS22482)the National Natural Science Foundation of China(Grant No.61773082)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202000601)the Research Program of Chongqing Talent,China(Grant No.cstc2021ycjhbgzxm0044).
文摘The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed-time eventtriggered group consensus,are designed.It is demonstrated that there is no Zeno behavior under the designed eventtriggered control.Meanwhile,it is proved that for an arbitrary initial state of the system,group consensus within the settling time could be obtained under the proposed control protocols by using matrix analysis and graph theory.Finally,a series of numerical examples are propounded to illustrate the performance of the proposed control protocol.
基金supported by the National Natural Science Foundation of China(Grant Nos.61473136 and 61174021)the Fundamental Research Funds for the Central Universities,China(Grant No.JUSRP51322B)the 111 Project,China(Grant No.B12018)
文摘Event-triggered control has been recent/y proposed as an effective strategy for the consensus of multi-agent systems. We present an improved distributed event-triggered control scheme that remedies a shortcoming of some previous event- triggered control schemes in the literature. This improved distributed event-triggered method has no need for continuously monitoring each agent' neighbors. Moreover, each agent in the multi-agent systems will not exhibit the Zeno behavior. Numerical simulation results show the effectiveness of the proposed consensus control.
基金Project supported by the National Natural Science Foundation of China(Grant No.11202084)
文摘This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11361043 and 61304161)the Natural Science Foundation of Jiangxi Province,China(Grant No.20122BAB201005)
文摘The PC synchronization of a class of chaotic systems is investigated in this paper. The drive system is assumed to have only one state variable available. By constructing proper observers, some novel criteria for PC synchronization are proposed via event-triggered control scheme. The Lii system and Chen system are taken as examples to demonstrate the efficiency of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Grant No.11701138)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2017202009 and F2018202075)
文摘This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varying formation,a distributed control scheme is designed in an event-triggered way,in which for each agent the controller is triggered only at its own event times.The interaction topology among agents is assumed to be switching.The common Lyapunov function as well as Riccati inequality is applied to solve the time-varying formation problem.Moreover,the Zeno behavior of triggering time sequences can be excluded for each agent.Finally,a simulation example is presented to illustrate the effectiveness of the theoretical results.
基金the Research Grants Council of Hong Kong(CityU 21208921)the Chow Sang Sang Group Research Fund Sponsored by Chow Sang Sang Holdings International Ltd.
文摘This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.
基金supported in part by the National Natural Science Foundation of China under Grant No.62203334Shanghai Rising-Star Program under Grant No.22YF1451300the Fundamental Research Funds for the Central Universities。
文摘This paper is devoted to event-triggered synchronization of delayed memristive neural networks with H∞and passivity performance.The aim is to guarantee the exponential synchronization and mixed H∞and passivity control for memristive neural networks by using event-triggered control.Firstly,a switching system is constructed under the event-triggered control strategy.Then,by adopting a piece-wise Lyapunov functional,a sufficient condition is established for the exponential synchronization and mixed H_(∞)and passivity performance.Moreover,an event-triggered controller design scheme is proposed using matrix decoupling method.Finally,the effectiveness of the designed controller is exemplified by a numerical example.
基金supported by the National Key Research and Development Program of China(Basic Research Class)(2017YFB0903000)the National Natural Science Foundation of China(U1909201).
文摘For islanded microgrids(MGs),distributed control is regarded as a preferred alternative to centralized control for the frequency restoration of MGs.However,distributed control with successive communication restricts the efficiency and resilience of the control system.To address this issue,this paper proposes a distributed event-triggered control strategy for the frequency secondary control in islanded MGs.The proposed event-triggered control is Zeno behavior free and enables each DG to update and propagate its state to neighboring DGs only when a specific“event”occurs,which significantly reduces the communication burden.Compared with the existing event-triggered control,a trigger condition checking period of the proposed event-triggered control is provided to reduce the computation burden when checking the trigger condition.Furthermore,using the aperiodicity and intermittent properties of the communication,a simple detection principle is proposed to detect and isolate the compromised communication links in a timely and economic fashion,which improves the resilience of the system against FDI attacks.Finally,the control effectiveness of the proposed control scheme is validated by the simulation results of the tests on an MG with 4 DGs.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.
基金supported in part by the National Key Research and Development Program of China(2018YFA0702200)the National Natural Science Foundation of China(52377079,62203097,62373196)。
文摘In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.
基金supported by the Beijing Natural Science Foundation(4222053).
文摘In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.
基金supported by the Postdoctoral Science Foundation of China(Grant No.2020TQ0028)the National Natural Science Foundation of China(No.62173016)Beijing Natural Science Foundation,PRChina(No.4202038)。
文摘The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based region coverage control law and the adaptive tracking control law.The APF-based region coverage control law ensures the coverage task is achieved until every single stratospheric airship ends up performing station keeping where near the respective global minimum point,in which an innovative solution to the local minimum problem is put forward.The adaptive tracking control law is designed to realize motion control using tracking the desired velocity and angular velocity given by coverage control law,with the consideration of several practical control problems as unknown individual differences and external disturbances.To save resources,the combined self-/event-triggered mechanism designed therein significantly reduces the times of state information transmission and control law calculation.The effectiveness of the proposed control framework is verified through simulations.
基金supported in part by the Graduate Research and Innovation Foundation of Chongqing,China,under Grant CYB22065in part by the China Scholarship Council.
文摘In this paper we address the issue of output-feedback robust control for a class of feedforward nonlinear systems.Essentially different from the related literature,the feedback/input signals are corrupted by additive noises and can only be transmitted intermittently due to the consideration of event-triggered communications,which bring new challenges to the control design.With the aid of matrix pencil based design procedures,regulating the output to near zero is globally solved by a non-conservative dynamic low-gain controller which requires only an a priori information on the upper-bound of the growth rate of nonlinearities.Theoretical analysis shows that the closed-loop system is input-to-state stable with respect to the sampled errors and additive noise.In particular,the observer and controller designs have a dual architecture with a single dynamic scaling parameter whose update law can be obtained by calculating the generalized eigenvalues of matrix pencils offline,which has an advantage in the sense of improving the system convergence rate.