Dezert-Smarandache(DSm) theory, a new information fusion theory, is widely applied in image processing, multiple targets tracking identification, and other areas for its excellent processing ability of imperfect inf...Dezert-Smarandache(DSm) theory, a new information fusion theory, is widely applied in image processing, multiple targets tracking identification, and other areas for its excellent processing ability of imperfect information. However, earlier research on DSm theory mainly focused on one sort of questions. An evidence fusion procedure is proposed based on the hybrid DSm model to compensate for a lack of research on the entire information procedure of DSm theory. This paper analyzes the evidence fusion procedure, as well as correlative node input and output information. Key steps and detailed procedures of evidence fusion are also discussed. Finally, an experiment illustrates the efficiency of the proposed evidence fusion procedure.展开更多
Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of se...Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.展开更多
A new conflicting evidence fusion method is proposed for the deficiency of Dempster's rule which can not fuse the conflicting evidence. Evidence is divided into three categories:believable evidence, non-conflictin...A new conflicting evidence fusion method is proposed for the deficiency of Dempster's rule which can not fuse the conflicting evidence. Evidence is divided into three categories:believable evidence, non-conflicting evidence and conflicting evidence. The influences of these three categories of evidences on fusion results when discounted are analyzed respectively. On these bases, the evidence distance and the conjunctive conflict are utilized in sequence to recognize the believable evidence and non-conflicting evidence. The discounting factors of these two categories of evidences are set to one, which keeps the evidences support the true hypothesis to the greatest degree, and makes the fusion results focus onto the true hypothesis. Examples of some missile fault diagnosis show that the new method can effectively fuse the conflicting evidences, and is suited to fuse the relievable evidences. The new method improves the reliability and rationality of fusion results compared with traditional methods.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement t...Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.展开更多
In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were det...In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were detected and multi-field coupling was analyzed. A multi-field coupling model of a damaged rock mass was established. The relationship between microseismic activity parameters and rock mass stability was analyzed, and a multi-parameter early warning index system was established and its solution program was compiled. Based on the D-S data fusion theory,an early warning model of rock mass instability combining multi-field coupling analysis and microseismic monitoring was constructed. Taking an underground mine stope as an object, the multi-field coupling model and its solution program were used to analyze mining response characteristics. The seismic field data were used to verify the accuracy of the multi-field coupling analysis. The early warning model was used to predict the instability of stope rock mass,and the early warning result is consistent with a real-world scenario.展开更多
Cloud computing provides easy and on-demand access to computing resources in a configurable pool.The flexibility of the cloud environment attracts more and more network services to be deployed on the cloud using group...Cloud computing provides easy and on-demand access to computing resources in a configurable pool.The flexibility of the cloud environment attracts more and more network services to be deployed on the cloud using groups of virtual machines(VMs),instead of being restricted on a single physical server.When more and more network services are deployed on the cloud,the detection of the intrusion likes Distributed Denialof-Service(DDoS)attack becomes much more challenging than that on the traditional servers because even a single network service now is possibly provided by groups of VMs across the cloud system.In this paper,we propose a cloud-based intrusion detection system(IDS)which inspects the features of data flow between neighboring VMs,analyzes the probability of being attacked on each pair of VMs and then regards it as independent evidence using Dempster-Shafer theory,and eventually combines the evidence among all pairs of VMs using the method of evidence fusion.Unlike the traditional IDS that focus on analyzing the entire network service externally,our proposed algorithm makes full use of the internal interactions between VMs,and the experiment proved that it can provide more accurate results than the traditional algorithm.展开更多
Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become...Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become the bottleneck of belief functions theory in real applications. The basic probability assignment (BPA) approximations, which can reduce the complexity of the BPAs, are always used to reduce the computational cost of evidence combination. In this paper, both the cardinalities and the mass assignment values of focal elements are used as the criteria of reduction. The two criteria are jointly used by using rank-level fusion. Some experiments and related analyses are provided to illustrate and justify the proposed new BPA approximation approach.展开更多
基金supported by the National Natural Science Foundation of China(61102168)the Military Innovation Foundation(X11QN106)
文摘Dezert-Smarandache(DSm) theory, a new information fusion theory, is widely applied in image processing, multiple targets tracking identification, and other areas for its excellent processing ability of imperfect information. However, earlier research on DSm theory mainly focused on one sort of questions. An evidence fusion procedure is proposed based on the hybrid DSm model to compensate for a lack of research on the entire information procedure of DSm theory. This paper analyzes the evidence fusion procedure, as well as correlative node input and output information. Key steps and detailed procedures of evidence fusion are also discussed. Finally, an experiment illustrates the efficiency of the proposed evidence fusion procedure.
基金supported by the National Natural Science Foundation of China under Grant No.60903166 the National High Technology Research and Development Program of China(863 Program) under Grants No.2012AA012506,No.2012AA012901,No.2012AA012903+9 种基金 Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20121103120032 the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.13YJCZH065 the Opening Project of Key Lab of Information Network Security of Ministry of Public Security(The Third Research Institute of Ministry of Public Security) under Grant No.C13613 the China Postdoctoral Science Foundation General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012 the Research on Education and Teaching of Beijing University of Technology under Grant No.ER2013C24 the Beijing Municipal Natural Science Foundation Sponsored by Hunan Postdoctoral Scientific Program Open Research Fund of Beijing Key Laboratory of Trusted Computing Funds for the Central Universities, Contract No.2012JBM030
文摘Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.
文摘A new conflicting evidence fusion method is proposed for the deficiency of Dempster's rule which can not fuse the conflicting evidence. Evidence is divided into three categories:believable evidence, non-conflicting evidence and conflicting evidence. The influences of these three categories of evidences on fusion results when discounted are analyzed respectively. On these bases, the evidence distance and the conjunctive conflict are utilized in sequence to recognize the believable evidence and non-conflicting evidence. The discounting factors of these two categories of evidences are set to one, which keeps the evidences support the true hypothesis to the greatest degree, and makes the fusion results focus onto the true hypothesis. Examples of some missile fault diagnosis show that the new method can effectively fuse the conflicting evidences, and is suited to fuse the relievable evidences. The new method improves the reliability and rationality of fusion results compared with traditional methods.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
文摘Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.
基金Project(2017yfc0602901)supported by the National Key R&D Program of China during the Thirteenth Five-Year Plan PeriodProject(2017zzts204)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were detected and multi-field coupling was analyzed. A multi-field coupling model of a damaged rock mass was established. The relationship between microseismic activity parameters and rock mass stability was analyzed, and a multi-parameter early warning index system was established and its solution program was compiled. Based on the D-S data fusion theory,an early warning model of rock mass instability combining multi-field coupling analysis and microseismic monitoring was constructed. Taking an underground mine stope as an object, the multi-field coupling model and its solution program were used to analyze mining response characteristics. The seismic field data were used to verify the accuracy of the multi-field coupling analysis. The early warning model was used to predict the instability of stope rock mass,and the early warning result is consistent with a real-world scenario.
文摘Cloud computing provides easy and on-demand access to computing resources in a configurable pool.The flexibility of the cloud environment attracts more and more network services to be deployed on the cloud using groups of virtual machines(VMs),instead of being restricted on a single physical server.When more and more network services are deployed on the cloud,the detection of the intrusion likes Distributed Denialof-Service(DDoS)attack becomes much more challenging than that on the traditional servers because even a single network service now is possibly provided by groups of VMs across the cloud system.In this paper,we propose a cloud-based intrusion detection system(IDS)which inspects the features of data flow between neighboring VMs,analyzes the probability of being attacked on each pair of VMs and then regards it as independent evidence using Dempster-Shafer theory,and eventually combines the evidence among all pairs of VMs using the method of evidence fusion.Unlike the traditional IDS that focus on analyzing the entire network service externally,our proposed algorithm makes full use of the internal interactions between VMs,and the experiment proved that it can provide more accurate results than the traditional algorithm.
基金co-supported by Grant for State Key Program for Basic Research of China(No.2013CB329405)National Natural Science Foundation of China(Nos.61104214,61203222)+3 种基金Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.61221063)Specialized Research Fund for the Doctoral Program of Higher Education(No.20120201120036)China Postdoctoral Science Foundation(No.20100481337),China Postdoctoral Science Foundation-Special fund(No.201104670)Fundamental Research Funds for the Central Universities
文摘Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become the bottleneck of belief functions theory in real applications. The basic probability assignment (BPA) approximations, which can reduce the complexity of the BPAs, are always used to reduce the computational cost of evidence combination. In this paper, both the cardinalities and the mass assignment values of focal elements are used as the criteria of reduction. The two criteria are jointly used by using rank-level fusion. Some experiments and related analyses are provided to illustrate and justify the proposed new BPA approximation approach.