期刊文献+
共找到5,421篇文章
< 1 2 250 >
每页显示 20 50 100
Machine learning for membrane design and discovery
1
作者 Haoyu Yin Muzi Xu +4 位作者 Zhiyao Luo Xiaotian Bi Jiali Li Sui Zhang Xiaonan Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期54-70,共17页
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an... Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end. 展开更多
关键词 Machine learning Membranes AI for Membrane DATA-DRIVEN design
下载PDF
Advancements in machine learning for material design and process optimization in the field of additive manufacturing
2
作者 Hao-ran Zhou Hao Yang +8 位作者 Huai-qian Li Ying-chun Ma Sen Yu Jian shi Jing-chang Cheng Peng Gao Bo Yu Zhi-quan Miao Yan-peng Wei 《China Foundry》 SCIE EI CAS CSCD 2024年第2期101-115,共15页
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co... Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing. 展开更多
关键词 additive manufacturing machine learning material design process optimization intersection of disciplines embedded machine learning
下载PDF
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
3
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 Heat exchanger network Reinforcement learning Mathematical programming Process design
下载PDF
Application of deep learning for informatics aided design of electrode materials in metal-ion batteries
4
作者 Bin Ma Lisheng Zhang +5 位作者 Wentao Wang Hanqing Yu Xianbin Yang Siyan Chen Huizhi Wang Xinhua Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期877-889,共13页
To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In thi... To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design. 展开更多
关键词 Cathode materials Material design Electrochemical performance prediction Deep learning Metal-ion batteries
下载PDF
Design and Research of an Intelligent Learning System for University Physics
5
作者 Lin Chen 《Journal of Contemporary Educational Research》 2024年第7期95-99,共5页
In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the d... In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics. 展开更多
关键词 UNIVERSITY PHYSICS Intelligent learning System design
下载PDF
Interface Design and Functional Optimization of Chinese Learning Apps Based on User Experience
6
作者 Qihui Hong Jialing Hu Nianxiu Fang 《教育技术与创新》 2024年第2期59-78,共20页
This research paper investigates the interface design and functional optimization of Chinese learning apps through the lens of user experience.With the increasing popularity of Chinese language learning apps in the er... This research paper investigates the interface design and functional optimization of Chinese learning apps through the lens of user experience.With the increasing popularity of Chinese language learning apps in the era of rapid mobile internet development,users'demands for enhanced interface design and interaction experience have grown significantly.The study aims to explore the influence of user feedback on the design and functionality of Chinese learning apps,proposing optimization strategies to improve user experience and learning outcomes.By conducting a comprehensive literature review,utilizing methods such as surveys and user interviews for data collection,and analyzing user feedback,this research identifies existing issues in the interface design and interaction experience of Chinese learning apps.The results present user opinions,feedback analysis,identified problems,improvement directions,and specific optimization strategies.The study discusses the potential impact of these optimization strategies on enhancing user experience and learning outcomes,compares findings with previous research,addresses limitations,and suggests future research directions.In conclusion,this research contributes to enriching the design theory of Chinese learning apps,offering practical optimization recommendations for developers,and supporting the continuous advancement of Chinese language learning apps. 展开更多
关键词 Chinese learning Apps User Experience Interface design Functional Optimization
下载PDF
A Deep Learning-Based Teaching Design for High School Geography Units:Taking the Example of Landforms of the Humanistic Education Edition
7
作者 Xiaojie Yuan Chenguang Zhang +3 位作者 Jiajia Li Jiqiang Niu Xiumei Li Xingjun Shi 《Journal of Contemporary Educational Research》 2024年第2期176-182,共7页
The traditional teaching methods of one-way cultivation of students can no longer meet the requirements of talent cultivation at this stage.The issue of how to promote students from passive acceptance to the independe... The traditional teaching methods of one-way cultivation of students can no longer meet the requirements of talent cultivation at this stage.The issue of how to promote students from passive acceptance to the independent cognitive understanding stage(i.e.deep learning)has become the focus of geography teaching.Therefore,under the guidance of deep learning theory,this paper takes the“landforms”knowledge unit of the Humanistic Education Edition as an example,improves the classroom teaching means through the unit teaching mode,reconstructs the“landforms”teaching unit,and explores the specific teaching of high school geography unit based on deep learning.This study provides a good example and guidelines for high school geography teaching and learning. 展开更多
关键词 Deep learning Unit teaching Geography education Case design High school education
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:2
8
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Application of machine learning in perovskite materials and devices:A review
9
作者 Ming Chen Zhenhua Yin +6 位作者 Zhicheng Shan Xiaokai Zheng Lei Liu Zhonghua Dai Jun Zhang Shengzhong(Frank)Liu Zhuo Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期254-272,共19页
Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for m... Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices. 展开更多
关键词 Machine learning PEROVSKITE Materials design Bandgap engineering Stability Crystal structure
下载PDF
Advances in machine learning-and artificial intelligence-assisted material design of steels 被引量:3
10
作者 Guangfei Pan Feiyang Wang +7 位作者 Chunlei Shang Honghui Wu Guilin Wu Junheng Gao Shuize Wang Zhijun Gao Xiaoye Zhou Xinping Mao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1003-1024,共22页
With the rapid development of artificial intelligence technology and increasing material data,machine learning-and artificial intelligence-assisted design of high-performance steel materials is becoming a mainstream p... With the rapid development of artificial intelligence technology and increasing material data,machine learning-and artificial intelligence-assisted design of high-performance steel materials is becoming a mainstream paradigm in materials science.Machine learning methods,based on an interdisciplinary discipline between computer science,statistics and material science,are good at discovering correlations between numerous data points.Compared with the traditional physical modeling method in material science,the main advantage of machine learning is that it overcomes the complex physical mechanisms of the material itself and provides a new perspective for the research and development of novel materials.This review starts with data preprocessing and the introduction of different machine learning models,including algorithm selection and model evaluation.Then,some successful cases of applying machine learning methods in the field of steel research are reviewed based on the main theme of optimizing composition,structure,processing,and performance.The application of machine learning methods to the performance-oriented inverse design of material composition and detection of steel defects is also reviewed.Finally,the applicability and limitations of machine learning in the material field are summarized,and future directions and prospects are discussed. 展开更多
关键词 machine learning data-driven design new research paradigm high-performance steel
下载PDF
A machine learning approach for accelerated design of magnesium alloys. Part A:Alloy data and property space
11
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3620-3633,共14页
Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more i... Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more importantly it does not harness all the data that exists in the field. In this work, a new approach is proposed that utilises data science and provides a detailed understanding of the data that exists in the field of Mg-alloy design to date. In this approach, first a consolidated alloy database that incorporates 916 datapoints was developed from the literature and experimental work. To analyse the characteristics of the database, alloying and thermomechanical processing effects on mechanical properties were explored via composition-process-property matrices. An unsupervised machine learning(ML) method of clustering was also implemented, using unlabelled data, with the aim of revealing potentially useful information for an alloy representation space of low dimensionality. In addition, the alloy database was correlated to thermodynamically stable secondary phases to further understand the relationships between microstructure and mechanical properties. This work not only introduces an invaluable open-source database, but it also provides, for the first-time data, insights that enable future accelerated digital Mg-alloy design. 展开更多
关键词 MAGNESIUM Alloy design Mg-alloy database Data analysis Data visualisation Unsupervised machine learning
下载PDF
A machine learning approach for accelerated design of magnesium alloys.Part B: Regression and property prediction
12
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4197-4205,共9页
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two... Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design. 展开更多
关键词 Magnesium alloys Digital alloy design Supervised machine learning Regression models Prediction performance
下载PDF
Design space exploration of neural network accelerator based on transfer learning
13
作者 吴豫章 ZHI Tian +1 位作者 SONG Xinkai LI Xi 《High Technology Letters》 EI CAS 2023年第4期416-426,共11页
With the increasing demand of computational power in artificial intelligence(AI)algorithms,dedicated accelerators have become a necessity.However,the complexity of hardware architectures,vast design search space,and c... With the increasing demand of computational power in artificial intelligence(AI)algorithms,dedicated accelerators have become a necessity.However,the complexity of hardware architectures,vast design search space,and complex tasks of accelerators have posed significant challenges.Tra-ditional search methods can become prohibitively slow if the search space continues to be expanded.A design space exploration(DSE)method is proposed based on transfer learning,which reduces the time for repeated training and uses multi-task models for different tasks on the same processor.The proposed method accurately predicts the latency and energy consumption associated with neural net-work accelerator design parameters,enabling faster identification of optimal outcomes compared with traditional methods.And compared with other DSE methods by using multilayer perceptron(MLP),the required training time is shorter.Comparative experiments with other methods demonstrate that the proposed method improves the efficiency of DSE without compromising the accuracy of the re-sults. 展开更多
关键词 design space exploration(DSE) transfer learning neural network accelerator multi-task learning
下载PDF
A Spider Monkey Optimization Algorithm Combining Opposition-Based Learning and Orthogonal Experimental Design
14
作者 Weizhi Liao Xiaoyun Xia +3 位作者 Xiaojun Jia Shigen Shen Helin Zhuang Xianchao Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3297-3323,共27页
As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the... As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems. 展开更多
关键词 Spider monkey optimization opposition-based learning orthogonal experimental design particle swarm
下载PDF
Applying UML and Machine Learning to Enhance System Analysis and Design
15
作者 Aparna Gadhi Ragha Madhavi Gondu +2 位作者 Chinna Manikanta Bandaru Keerthana Chit Reddy Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2023年第5期67-76,共10页
System analysis and design (SAD) is a crucial process in the development of software systems. The impact of modeling techniques and software engineering practices on SAD has been the focus of research for many years. ... System analysis and design (SAD) is a crucial process in the development of software systems. The impact of modeling techniques and software engineering practices on SAD has been the focus of research for many years. Two such techniques that have had a significant impact on SAD are Unified Modeling Language (UML) and machine learning. UML has been used to model the structure and behavior of software systems, while machine learning has been used to automatically learn patterns in data and make predictions. The purpose of this paper is to review the literature on the impact of UML and machine learning on SAD. We summarize the findings from several studies and highlight the key insights related to the benefits and limitations of these techniques for SAD. Our review shows that both UML and machine learning have had a positive impact on SAD, with UML improving communication and documentation, and machine learning improving the accuracy of predictions. However, there are also challenges associated with their use, such as the need for expertise and the difficulty of interpreting machine learning models. Our findings suggest that a combination of UML and machine learning can enhance SAD by leveraging the strengths of each technique. 展开更多
关键词 UML Machine learning System Analysis design IMPLEMENTATION
下载PDF
Design of N-11-Azaartemisinins Potentially Active against Plasmodium falciparum by Combined Molecular Electrostatic Potential, Ligand-Receptor Interaction and Models Built with Supervised Machine Learning Methods
16
作者 Jeferson Stiver Oliveira de Castro José Ciríaco Pinheiro +5 位作者 Sílvia Simone dos Santos de Morais Heriberto Rodrigues Bitencourt Antonio Florêncio de Figueiredo Marcos Antonio Barros dos Santos Fábio dos Santos Gil Ana Cecília Barbosa Pinheiro 《Journal of Biophysical Chemistry》 CAS 2023年第1期1-29,共29页
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m... N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation. 展开更多
关键词 Antimalarial design MEP Ligand-Receptor Interaction Supervised Machine learning Methods Models Built with Supervised Machine learning Methods
下载PDF
Problem-Based Learning(PBL)Teaching Design in Enhancing College Students’Innovation Ability:Taking the Traditional Dress Design Course as An Example
17
作者 Xinyi Zhang Zhenghua Li 《Journal of Contemporary Educational Research》 2023年第11期215-219,共5页
This paper combines the cultivation of innovation ability with the content of problem-based learning(PBL),analyzes the current situation of the traditional dress design course,discusses the problems existing in the cu... This paper combines the cultivation of innovation ability with the content of problem-based learning(PBL),analyzes the current situation of the traditional dress design course,discusses the problems existing in the cultivation of innovation ability of college and university traditional dress design,and searches for the strategies to improve students’innovation ability based on PBL.This paper argues that PBL can provide assistance to the teaching design of traditional dress design courses,which is conducive to improving students’innovation ability in traditional dress design and realizing the desired teaching effect. 展开更多
关键词 Problem-based learning(PBL) CREATIVITY Traditional dress design COURSE
下载PDF
The Practical Path to Cultivating Innovative Talents:Implementing Cross-Disciplinary Learning Communities in Environmental Design Education
18
作者 Bingjie Zhao 《Journal of Contemporary Educational Research》 2023年第11期33-37,共5页
In response to the national strategy of“vigorously cultivating interdisciplinary talents and actively promoting interdisciplinary integration,”this article focuses on the nationally recognized Environmental Design p... In response to the national strategy of“vigorously cultivating interdisciplinary talents and actively promoting interdisciplinary integration,”this article focuses on the nationally recognized Environmental Design program at Hezhou University’s College of Design,leveraging local industry advantages to engage in interdisciplinary integration through educational practices.Using the“Construction of the Panoramic Virtual Nature Museum of the Guizhou Crocodile Lizard at Mount Dagui”as a case study,we aim to establish a professional and interdisciplinary learning community,incorporate student-centered interactive teaching methods,boost student motivation,enhance teaching quality,nurture forward-thinking versatile innovative talents,and provide a guideline for interdisciplinary educational reform. 展开更多
关键词 Interdisciplinary integration Environmental design Pedagogical practices Cross-disciplinary learning communities Interactive teaching
下载PDF
Play by Design:Developing Artificial Intelligence Literacy through Game-based Learning
19
作者 Xiaoxue Du Xi Wang 《Journal of Computer Science Research》 2023年第4期1-12,共12页
The paper proposes an innovative approach aimed at fostering AI literacy through interactive gaming experiences.This paper designs a game-based prototype for preparing pre-service teachers to innovate teaching practic... The paper proposes an innovative approach aimed at fostering AI literacy through interactive gaming experiences.This paper designs a game-based prototype for preparing pre-service teachers to innovate teaching practices across disciplines.The simulation,Color Conquest,serves as a strategic game to encourage educators to reconsider their pedagogical practices.It allows teachers to use and develop various scenarios by customizing maps,giving students agency to engage in the complex decision-making process.Additionally,this engagement process provides teachers with an opportunity to develop students’skills in artificial intelligence literacy as students actively develop strategic thinking,problem-solving,and critical reasoning skills. 展开更多
关键词 Game-based learning Game-based assessment Artificial intelligence literacy design thinking Computational thinking Teacher education
下载PDF
A Study on the Instructional Design of Interdisciplinary Thematic Learning in Middle School Physical Education Based on the CASES-T Model
20
作者 Degui Wang 《Journal of Contemporary Educational Research》 2023年第12期320-325,共6页
With the deepening of educational reform,interdisciplinary thematic learning,as an emerging educational model,has become a focus of attention in the field of educational research.Based on the STEM(science,technology,e... With the deepening of educational reform,interdisciplinary thematic learning,as an emerging educational model,has become a focus of attention in the field of educational research.Based on the STEM(science,technology,engineering,and mathematics)education concept and CASES-T(Content,Activity,Situation,Evaluation,Strategy-Target)model,this study provides a theoretical basis for the teaching design and implementation of interdisciplinary thematic learning in middle school physical education.Through the analysis of specific interdisciplinary thematic learning cases,it aims to provide theoretical support and practical guidance for the reform of middle school physical education through the CASES-T model-based interdisciplinary thematic teaching design research in middle school physical education,in order to enhance students’learning effects,cultivate core literacy in physical education,and promote students’all-round development. 展开更多
关键词 New curriculum standards Middle school physical education Interdisciplinary thematic learning Instructional design
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部