The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i...The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.展开更多
To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive ...To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.展开更多
Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is o...Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is often not satisfied,resulting in ER rule inapplicable.In this paper,an Evidential Reasoning rule for Dependent Evidence combination(ERr-DE)is developed.Firstly,the aggregation sequence of multiple pieces of evidence is determined according to evidence reliability.On this basis,a calculation method of evidence Relative Total Dependence Coefficient(RTDC)is proposed using the distance correlation method.Secondly,as a discounting factor,RTDC is introduced into the ER rule framework,and the ERr-DE model is formulated.The aggregation process of two pieces of dependent evidence by ERr-DE is investigated,which is then generalized to aggregate multiple pieces of non-independent evidence.Thirdly,sensitivity analysis is carried out to investigate the relationship between the model output and the RTDC.The properties of sensitivity coefficient are explored and mathematically proofed.The conjunctive probabilistic reasoning process of ERr-DE and the properties of sensitivity coefficient are verified by two numerical examples respectively.Finally,the practical application of the ERr-DE is validated by a case study on the performance assessment of satellite turntable system.展开更多
To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First...To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.展开更多
基金This work is supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038.
文摘The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.
基金supported by the Military Scientific Research Program(41401020301).
文摘To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.
基金co-supported by the National Natural Science Foundation of China (No. 61833016)the Shaanxi Outstanding Youth Science Foundation,China (No. 2020JC-34)the Shaanxi Science and Technology Innovation Team,China(No. 2022TD-24)
文摘Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is often not satisfied,resulting in ER rule inapplicable.In this paper,an Evidential Reasoning rule for Dependent Evidence combination(ERr-DE)is developed.Firstly,the aggregation sequence of multiple pieces of evidence is determined according to evidence reliability.On this basis,a calculation method of evidence Relative Total Dependence Coefficient(RTDC)is proposed using the distance correlation method.Secondly,as a discounting factor,RTDC is introduced into the ER rule framework,and the ERr-DE model is formulated.The aggregation process of two pieces of dependent evidence by ERr-DE is investigated,which is then generalized to aggregate multiple pieces of non-independent evidence.Thirdly,sensitivity analysis is carried out to investigate the relationship between the model output and the RTDC.The properties of sensitivity coefficient are explored and mathematically proofed.The conjunctive probabilistic reasoning process of ERr-DE and the properties of sensitivity coefficient are verified by two numerical examples respectively.Finally,the practical application of the ERr-DE is validated by a case study on the performance assessment of satellite turntable system.
基金supported by the Provincial Universities Basic Business Expense Scientific Research Projects of Heilongjiang Province(No.2021-KYYWF-0179)the Science and Technology Project of Henan Province(No.212102310991)+2 种基金the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security(No.AGK2015003)the Key Scientific Research Project of Henan Province(No.21A413001)the Postgraduate Innovation Project of Harbin Normal University(No.HSDSSCX2021-121).
文摘To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.