We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution co...We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.展开更多
The existence of mild solutions for non-autonomous evolution equations with nonlocal conditions in Banach space is studied in this article. We obtained the existence of at least one mild solution to the evolution equa...The existence of mild solutions for non-autonomous evolution equations with nonlocal conditions in Banach space is studied in this article. We obtained the existence of at least one mild solution to the evolution equations by using Krasnoselskii’s fixed point theorem as well as the theory of the evolution family. The interest of this paper is that any assumptions are not imposed on the nonlocal terms and Green’s functions and a new alternative method is applied to prove the existence of mild solutions. The results obtained in this paper may improve some related conclusions on this topic. An example is given as an application of the results.展开更多
In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operato...In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operators. We establish the existence and uniqueness ofanti-periodic solutions, which improve andgeneralize the results that have been obtained. Finally weillustrate the abstract theory by discussing a simple example of an anti-periodic problem fornonlinear partial differential equations.展开更多
Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equati...Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.展开更多
This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which adm...This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which admits the derivative- dependent functional separable solutions (DDFSSs). We also extend the concept of the DDFSS to cover other variable separation approaches.展开更多
In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to in...In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to interpolate the implicit level set function of the evolution equation with a high level of accuracy and smoothness. Then, the original initial value problem is discretized into an interpolation problem. Accordingly, the evolution equation is converted into a set of coupled ordinary differential equations, and a smooth evolution can be retained. Compared with finite difference scheme based level set approaches, the complex and costly re-initialization procedure is unnecessary. Numerical examples are also given to show the efficiency of the method.展开更多
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits de...We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.展开更多
In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to ...In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.展开更多
This paper is mainly concerned with the S-asymptotically Bloch type periodicity.Firstly,we introduce a new notion of S-asymptotically Bloch type periodic functions,which can be seen as a generalization of concepts of ...This paper is mainly concerned with the S-asymptotically Bloch type periodicity.Firstly,we introduce a new notion of S-asymptotically Bloch type periodic functions,which can be seen as a generalization of concepts of S-asymptoticallyω-periodic functions and S-asymptoticallyω-anti-periodic functions.Secondly,we establish some fundamental properties on S-asymptotically Bloch type periodic functions.Finally,we apply the results obtained to investigate the existence and uniqueness of S-asymptotically Bloch type periodic mild solutions to some semi-linear differential equations in Banach spaces.展开更多
In this paper, a new auxiliary equation method is proposed. Combined with the mapping method, abundant periodic wave solutions for generalized Klein-Gordon equation and Benjamin equation are obtained. They are new typ...In this paper, a new auxiliary equation method is proposed. Combined with the mapping method, abundant periodic wave solutions for generalized Klein-Gordon equation and Benjamin equation are obtained. They are new types of periodic wave solutions which are rarely found in previous studies. As <em>m</em> → 0 and <em>m</em> → 1, some new types of trigonometric solutions and solitary solutions are also obtained correspondingly. This method is promising for constructing abundant periodic wave solutions and solitary solutions of nonlinear evolution equations (NLEEs) in mathematical physics.展开更多
In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as...In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameter α goes to zero.展开更多
The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions conta...The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.展开更多
In this paper, the Adomian decomposition method is developed for the numerical solutions of a class of nonlinear evolution equations with nonlinear term of any order, utt+auxx + bu + cu^p+ du^2p-1=0, which contain...In this paper, the Adomian decomposition method is developed for the numerical solutions of a class of nonlinear evolution equations with nonlinear term of any order, utt+auxx + bu + cu^p+ du^2p-1=0, which contains some important famous equations. When setting the initial conditions in different forms, some new generalized numerical solutions: numerical hyperbolic solutions, numerical doubly periodic solutions are obtained. The numerical solutions are compared with exact solutions. The scheme is tested by choosing different values of p, positive and negative, integer and fraction, to illustrate the efficiency of the ADM method and the generalization of the solutions.展开更多
Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract ...Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six non- equivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.展开更多
The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenome...The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.展开更多
This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weie...This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations.展开更多
We study one-and two-soliton solutions for the Cahn–Allen(CA) equation and the Brethorton equation. The CA equation has broad spectrum of applications especially in anti-phase boundary motion and it is used in phase-...We study one-and two-soliton solutions for the Cahn–Allen(CA) equation and the Brethorton equation. The CA equation has broad spectrum of applications especially in anti-phase boundary motion and it is used in phase-field models.While the Brethorton equation is a model for dispersive wave systems, it is used to find the resonant nonlinear interaction among three linear modes. We use the Hirota bilinear method to obtain one-and two-soliton solutions to the CA equation and the Brethorton equation.展开更多
Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approxi...Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.展开更多
The main purpose of this paper is to discuss the existence and asymptotic behavior of solutions for [GRAPHICS] and for which the sufficient conditions of asymptotic behavior are obtained and the restriction for the ex...The main purpose of this paper is to discuss the existence and asymptotic behavior of solutions for [GRAPHICS] and for which the sufficient conditions of asymptotic behavior are obtained and the restriction for the existence is reduced.展开更多
A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equa...A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.展开更多
基金Supported by the Science and Technology Research Projects of Hubei Provincial Department of Education(B2022077)。
文摘We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.
文摘The existence of mild solutions for non-autonomous evolution equations with nonlocal conditions in Banach space is studied in this article. We obtained the existence of at least one mild solution to the evolution equations by using Krasnoselskii’s fixed point theorem as well as the theory of the evolution family. The interest of this paper is that any assumptions are not imposed on the nonlocal terms and Green’s functions and a new alternative method is applied to prove the existence of mild solutions. The results obtained in this paper may improve some related conclusions on this topic. An example is given as an application of the results.
文摘In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operators. We establish the existence and uniqueness ofanti-periodic solutions, which improve andgeneralize the results that have been obtained. Finally weillustrate the abstract theory by discussing a simple example of an anti-periodic problem fornonlinear partial differential equations.
文摘Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10371098, 10447007 and 10475055), the Natural Science Foundation of Shaanxi Province of China (Grant No 2005A13).
文摘This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which admits the derivative- dependent functional separable solutions (DDFSSs). We also extend the concept of the DDFSS to cover other variable separation approaches.
基金Project supported by the National Natural Science Foundation of China (Grant No.11101454)the Educational Commission Foundation of Chongqing City,China (Grant No.KJ130626)the Program of Innovation Team Project in University of Chongqing City,China (Grant No.KJTD201308)
文摘In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to interpolate the implicit level set function of the evolution equation with a high level of accuracy and smoothness. Then, the original initial value problem is discretized into an interpolation problem. Accordingly, the evolution equation is converted into a set of coupled ordinary differential equations, and a smooth evolution can be retained. Compared with finite difference scheme based level set approaches, the complex and costly re-initialization procedure is unnecessary. Numerical examples are also given to show the efficiency of the method.
基金National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.
基金supported by NSFC(11271020,11401010)Natural Science Foundation of Anhui Province(1308085QA14)+1 种基金supported by NSFC(11571071)Innovation Program of Shanghai Municipal Education Commission(12ZZ063)
文摘In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.
基金supported by NSF of Shaanxi Province(2020JM-183).
文摘This paper is mainly concerned with the S-asymptotically Bloch type periodicity.Firstly,we introduce a new notion of S-asymptotically Bloch type periodic functions,which can be seen as a generalization of concepts of S-asymptoticallyω-periodic functions and S-asymptoticallyω-anti-periodic functions.Secondly,we establish some fundamental properties on S-asymptotically Bloch type periodic functions.Finally,we apply the results obtained to investigate the existence and uniqueness of S-asymptotically Bloch type periodic mild solutions to some semi-linear differential equations in Banach spaces.
文摘In this paper, a new auxiliary equation method is proposed. Combined with the mapping method, abundant periodic wave solutions for generalized Klein-Gordon equation and Benjamin equation are obtained. They are new types of periodic wave solutions which are rarely found in previous studies. As <em>m</em> → 0 and <em>m</em> → 1, some new types of trigonometric solutions and solitary solutions are also obtained correspondingly. This method is promising for constructing abundant periodic wave solutions and solitary solutions of nonlinear evolution equations (NLEEs) in mathematical physics.
基金Supported by the Natural Science Foundation of China(11001095 and 11001096)
文摘In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameter α goes to zero.
文摘The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.
基金supported by National Natural Science Foundation of China under Grant No.10735030Natural Science Foundation of Zhejiang Province of China under Grant No.Y604056Doctoral Science Foundation of Ningbo City under Grant No.2005A61030
文摘In this paper, the Adomian decomposition method is developed for the numerical solutions of a class of nonlinear evolution equations with nonlinear term of any order, utt+auxx + bu + cu^p+ du^2p-1=0, which contains some important famous equations. When setting the initial conditions in different forms, some new generalized numerical solutions: numerical hyperbolic solutions, numerical doubly periodic solutions are obtained. The numerical solutions are compared with exact solutions. The scheme is tested by choosing different values of p, positive and negative, integer and fraction, to illustrate the efficiency of the ADM method and the generalization of the solutions.
基金supported by the National Key Basic Research Project of China (973 Program)(No. 2004CB318000)
文摘Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six non- equivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379033,51522902,51579040,J1103110,and 11201048)
文摘The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.
基金supported by the Open Project of Key Laboratory of Mathematics Mechanization,CAS under Grant No.KLMM0602
文摘This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations.
文摘We study one-and two-soliton solutions for the Cahn–Allen(CA) equation and the Brethorton equation. The CA equation has broad spectrum of applications especially in anti-phase boundary motion and it is used in phase-field models.While the Brethorton equation is a model for dispersive wave systems, it is used to find the resonant nonlinear interaction among three linear modes. We use the Hirota bilinear method to obtain one-and two-soliton solutions to the CA equation and the Brethorton equation.
文摘Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.
文摘The main purpose of this paper is to discuss the existence and asymptotic behavior of solutions for [GRAPHICS] and for which the sufficient conditions of asymptotic behavior are obtained and the restriction for the existence is reduced.
文摘A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.