This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x...This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.展开更多
We contimle the work initiated in [1] (Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematics Science, English Series, 21(5), 977-996 (2005)) and study the structural ...We contimle the work initiated in [1] (Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematics Science, English Series, 21(5), 977-996 (2005)) and study the structural properties of the solution set of second order evolution inclusions which are defined in the analytic framework of the evolution triple. For the convex problem we show that the solution set is compact Rs, while for the nonconvex problem we show that it is path connected, Also we show that the solution set is closed only if the multivalued nonlinearity is convex valued. Finally we illustrate the results by considering a nonlinear hyperbolic problem with discontinuities.展开更多
文摘This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.
文摘We contimle the work initiated in [1] (Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematics Science, English Series, 21(5), 977-996 (2005)) and study the structural properties of the solution set of second order evolution inclusions which are defined in the analytic framework of the evolution triple. For the convex problem we show that the solution set is compact Rs, while for the nonconvex problem we show that it is path connected, Also we show that the solution set is closed only if the multivalued nonlinearity is convex valued. Finally we illustrate the results by considering a nonlinear hyperbolic problem with discontinuities.